, Volume 46, Issue 4, pp 401–418 | Cite as

Recombinant and classically selected factors of potato plant resistance to the Colorado potato beetle, Leptinotarsa decemlineata, variously affect the potato aphid parasitoid Aphidius nigripes

  • A. Ashouri
  • Dominique Michaud
  • Conrad Cloutier


Different forms of crop resistance developed against majorpotato pests such as the Colorado potato beetle (CPB), Leptinotarsadecemlineata, may be variously compatible with biological controlof secondary pests such as aphids. We compared the performance of theparasitoid Aphidius nigripes developing in the aphid hostMacrosiphum euphorbiae, on five potato lines, including atransgenic `Superior-BT' line expressing the CryIIIA toxin ofBacillus thuringiensis, which is specific to Coleoptera; andthe `NYL 235-4' line derived from Solanum berthaultii,characterized by relatively unspecific resistance to herbivores based onmoderately-high density of glandular trichomes. The other lines testedwere a `Kennebec-OCI' transgenic line expressing the protease inhibitorrice cystatin I (OCI), a potential resistance factor against coleopteranpests; and the commercial cultivars `Superior' and `Kennebec' used ascontrols. Parasitoid immature survival and adult size were reducedcompared to controls when the wasps developed on aphids fed the`Superior-BT' potato. In contrast, parasitoid size and fecundityincreased above control when the wasps developed on aphids fed the`Kennebec-OCI' potato. Parasitoids reached the adult stage faster andwere more fecund on `NYL 235-4' than control lines. The results indicatethat the different forms of potato resistance currently developed mainlyagainst the CPB had various unexpected effects on aphid parasitoidfitness. These effects on the parasitoid were complex but were generallyinterpretable in terms of host aphid quality variation among potatolines used as food by the aphids during parasitoiddevelopment.

Aphidius nigripes biological control Colorado potato beetle Macrosiphum euphorbiae parasitoid potato aphid resistance factors transgenic-classical resistant plant tritrophic interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashouri, A., S. Overney, D. Michaud and C. Cloutier, 1998. Fitness and feeding are affected in the two-spotted stinkbug, Perillus bioculatus, by the cysteine proteinase inhibitor, Oryzacystatin I. Arch. Insect Physiol. Biochem. 38: 74-83.Google Scholar
  2. Ashouri, A., D. Michaud and C. Cloutier, 2001. Unexpected effects of different potato resistance factors to the Colorado potato beetle (Coleoptera: Chrysomelidae) on the potato aphid (Homopteno: Aphididae). Environ. Entomol. (in press).Google Scholar
  3. Barton, K. and M. Miller, 1993. Production of Bacillus thuringiensis insecticidal proteins in plants. In: S. Kung and R. Wu (eds), Transgenic Plants. Engineering and Utilization, Academic Press, New York. pp. 297-315.Google Scholar
  4. Benchekroun, A., D. Michaud, B. Nguyen-Quoc, S. Overney, Y. Desjardins and S. Yelle, 1995. Synthesis of active Oryzcystatin I in transgenic potato plants. Plant Cell Rep. 14: 585-588.Google Scholar
  5. Blackman, R.L. and V.F. Eastop, 1984. Aphids on the world's crops: An identification and information guide. Wiley, New York.Google Scholar
  6. Boiteau, G., 1994. Pomme de terre. In: C. Richard and G. Boivin (eds), Maladies et ravageurs des cultures légumières au Canada, La Société Canadienne de phytopathologie et la Société d'entomologie du Canada, Ottawa. pp. 247-290.Google Scholar
  7. Bottrell, D., P. Barbosa and F. Gould, 1998. Manipulating natural enemies by plant variety selection and modification: A realistic strategy? Annu. Rev. Entomol. 43: 347-367.Google Scholar
  8. Brodeur, J. and J.N. McNeil, 1989. Biotic and abiotic factors involved in diapause induction of the parasitoid, Aphidius nigripes (Hymenoptera: Aphidiidae). J. Insect Physiol. 35: 969-974.Google Scholar
  9. Brodeur, J. and J.N. McNeil, 1991. The effect of host plant architecture on the distribution and survival of Aphidius nigripes (Hymenoptera: Aphidiidae). Redia 74: 251-258.Google Scholar
  10. Brodeur, J. and J.N. McNeil, 1992. Host behavior modification by the endoparasitoid Aphidius nigripes: A strategy to reduce hyperparasitism. Ecol. Entomol. 17: 97-104.Google Scholar
  11. Brodeur, J. and J.N. McNeil, 1994. Life history of the aphid hyperparasitoid Asaphes vulgaris Walker (Peteromalidae) possible consequences on the efficacy of the primary parasitoid Aphidius nigripes Ashmead (Aphidiidae). Can. Entomol. 126: 1493-1497.Google Scholar
  12. Brough, C.N. and A.F.G. Dixon, 1989. Reproductive investment and the interovariole differences in embryo development and size in virginoparae of the vetch aphid, Megoura viciae. Entomol. Exp. Appl. 52: 215-220.Google Scholar
  13. Clark, T. and F. Messina, 1998a. Foraging behavior of lacewing larvae (Neuroptera: Chrysopidae) on plants with divergent architectures. J. Insect Behav. 11: 303-317.Google Scholar
  14. Clark, T. and F. Messina, 1998b. Plant architecture and the foraging success of ladybird beetles attacking the Russian wheat aphid. Entomol. Exp. Appl. 86: 153-161.Google Scholar
  15. Cloutier, C. and D. Michaud, 2000. Expression of protease inhibitors in potato. In: D. Michaud (ed), Recombinant Protease Inhibitors in Plants, Landes Bioscience, Georgetown, Texas. pp. 151-169.Google Scholar
  16. Cloutier, C., J.N. McNeil and J. Regnière, 1981. Fecundity, longevity, and sex ratio of Aphidius nigripes (Hymenoptera: Aphidiidae) parasitizing different stages of its host, Macrosiphum euphorbiae (Homoptera: Aphididae). Can. Entomol. 113: 193-198.Google Scholar
  17. Cloutier, C., M. Fournier, C. Jean, S. Yelle and D. Michaud, 1999. Growth compensation and faster development of Colorado potato beetle (Coleoptera: Chrysomelidae) feeding on potato foliage expressing Oryzacystatin I. Arch. Insect Physiol. Biochem. 40: 69-79.Google Scholar
  18. Cloutier, C., C. Jean, M. Fournier, S. Yelle and D. Michaud, 2000. Adult Colorado potato beetles compensate nutritional stress on Oryzacystatin I-transgenic potato by hypertrophic behavior and over-production of insensitive proteases. Arch. Insect Biochem Physiol. 44: 69-81.Google Scholar
  19. Dimock, M.B. and W.M. Tingey, 1985. Resistance in Solanum spp. to the Colorado potato beetle: mechanisms, genetic resources and potential. In: D.N. Ferro and R.H. Voss (eds), Proceedings of the Symposium on the Colorado Potato Beetle. 17th international congress of entomology, Mass. Agric. Exp. Stn. Bull. No. 704, pp. 79-106.Google Scholar
  20. Dogan, E.B., R.E. Berry, G.L. Reed and P.A. Rossignol, 1996. Biological parameters of convergent lady beetle (Coleoptera: Coccinellidae) feeding on aphids (Homoptera: Aphididae) on transgenic potato. J. Econ. Entomol. 89: 1105-1108.Google Scholar
  21. Duncan, J. and R. Couture, 1956. Les pucerons de la pomme de terre dans l'est du Québec. 38èeme rapport de la Sociéetée du Quéebec pour la protection des plantes. pp. 49-55.Google Scholar
  22. Ebora, R.V. and M.B. Sticklen, 1994. Genetic transformation of potato for insect resistance. In: G.W. Zehnder, M.L. Powelson, R.K. Jansson and K.V. Raman (eds), Advances in Potato Pest Biology and Management, APS Press, St Paul, Minnesota. pp. 509-521.Google Scholar
  23. Fuentes-Contreras, E., J.K. Pell and H.M. Niemeyer, 1998. Influence of plant resistance at the third trophic level: interactions between parasitoids and entomopathogenetic fungi of cereal aphids. Oecologia 117: 426-432.Google Scholar
  24. Gatehouse, A.M.R. and J.A. Gatehouse, 1998. Identifying proteins with insecticidal activity: Use of encoding genes to produce insect-resistant transgenic crops. Pestic. Sci. 52: 165-175.Google Scholar
  25. Gill, S.S., E.A. Cowles and P.V. Pietrantonio, 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636.Google Scholar
  26. Hanzlik, M.W., G.G. Kennedy, D.C. Sanders and D.W. Monks, 1997. Response of European corn borer (Ostrinia nubilalis, Hubner) to two potato hybrids selected for resistance to Colorado potato beetle. Crop Prot. 16: 487-490.Google Scholar
  27. Hare, J.D., 1992. Effects of plant variation on herbivore-natural enemy interactions. In: R.S. Fritz and E.L. Simms (eds), Plant Resistance to Herbivores and Pathogens. Ecology, Evolution and Genetics, University of Chicago Press, Chicago. pp. 278-298.Google Scholar
  28. Herzog, D.C. and J.E. Funderburk, 1985. Plant resistance and cultural practice interactions with biological control. In: M.A. Hoy and D.C. Herzog (eds), Biological Control in Agricultural IPM Systems, Academic Press, Orlando. pp. 67-88.Google Scholar
  29. Hilbeck, A., M. Baumgartner, P.M. Fried and F. Bigler, 1998a. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Entomol. 27: 480-487.Google Scholar
  30. Hilbeck, A., W.J. Moar, M. Pusztai-Carey, A. Filippini and F. Bigler, 1998b. Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Entomol. 27: 1255-1263.Google Scholar
  31. Hoy, C.W., G. Feldman, F. Gould, G.G. Kennedy, G. Reed and J.A. Wyman, 1998. Naturally occurring biological controls in genetically engineered crops. In: P. Barbosa (ed), Conservation Biological Control, Academic Press, San Diego. pp. 185-205.Google Scholar
  32. Jouanin, L., M. Bonadée-Bottino, C. Girard and G. Morrot, 1998. Transgenic plants for insect resistance. Plant Sci. 131: 1-11.Google Scholar
  33. Kennedy, G.G., R.R.J. Farrar and R.K. Kashyap, 1991. 2-Tridecanone-glandular trichomemediated insect resistance in tomato: Effect on parasitoids and predators of Heliothis zea. In: P.A. Hedin (ed), Naturally Occurring Pest Bioregulators, American Chemical Society, Washington, D. C. pp. 150-165.Google Scholar
  34. Lange, W.H. and L. Bronson, 1981. Insect pests of tomatoes. Annu. Rev. Entomol. 26: 345-371.Google Scholar
  35. Lecardonnel, A, L. Chauvin, L. Jouanin, A. Beaujean, G. Prévost and Sangwan-Norreel, 1999. Effect of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Sci. 140: 87-98.Google Scholar
  36. Mackauer, M. and W. Völkl, 1993. Regulation of aphid populations by aphidiid wasps: Does parasitoid foraging behaviour or hyperparasitism limit impact? Oecologia 94: 339-350.Google Scholar
  37. Malone, L.A. and E.P.L. Burgess, 2000. Interference of protease inhibitors on non-target organisms. In: D. Michaud (ed), Recombinant protease inhibitors in plants, Landes Bioscience, Georgetown, Texas. pp. 91-108.Google Scholar
  38. Michaud, D. (ed), 2000. Recombinant protease inhibitors in plants. Landes Bioscience, Georgetown, Texas.Google Scholar
  39. Miller, R.G. Jr, 1981. Simultaneous statistical inference, 2nd ed. Springer, New York.Google Scholar
  40. Neal, J.J., J.C. Steffens and W.M. Tingey, 1989. Glandular trichomes of Solanum berthaultii and resistance to the Colorado potato beetle. Entomol. Exp. Appl. 51: 133-140.Google Scholar
  41. Obrycki, J.J. and M.J. Tauber, 1984. Natural enemy activity on glandular pubescent potato plants in the greenhouse: an unreliable predictor of effects in the field. Environ. Entomol. 13: 679-683.Google Scholar
  42. Obrycki, J.J. and M.J. Tauber, 1985. Seasonal occurence and relative abundance of aphid predators and parasitoids on pubescent potato plants. Can. Entomol. 117: 1231-1237.Google Scholar
  43. Obrycki, J.J., M.J. Tauber and W.M. Tingey, 1983. Predator and parasitoid interaction with aphid-resistant potatoes to reduce aphid densities: A two-year field study. J. Econ. Entomol. 76: 456-462.Google Scholar
  44. Overney, S., S. Yelle and C. Cloutier, 1998. Occurrence of digestive cysteine proteases in Perillus bioculatus, a natural predator of the Colorado potato beetle. Comp. Biochem. Physiol. B 120: 191-196.Google Scholar
  45. Pelletier, Y. and Z. Smilowitz, 1990. Effect of trichome B exudate of Solanum berthaultii Hawkes on consumption by the Colorado potato beetle, Leptinotarsa decemlineata (Say). J. Chem. Ecol. 16: 1547-1555.Google Scholar
  46. Pelletier, Y. and Z. Smilowitz, 1991. Biological and genetic study on the utilization of Solanum berthaultii Hawkes by the Colorado potato beetle (Leptinotarsa decemlineata (Say)). Can. J. Zool. 69: 1280-1288.Google Scholar
  47. Pelletier, Y. and D. Michaud, 1996. Insect pest control on potato: genetically-based control. In: R.M. Duchesne and G. Boiteau (eds), Proceedings of Symposium Lutte aux insectes nuisibles de la pomme de terre-Potato insect pest control, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, Québec, Canada. pp. 69-80.Google Scholar
  48. Perlak, F.J., T.B. Stone, Y.M. Muskopf, L.J. Petersen, G.B. Parker, S.A. McPherson, J. Wyman, S. Love, G. Reed, D. Biever and D.A. Fischhoff, 1993. Genetically improved potatoes: Protection from damage by Colorado potato beetles. Plant Mol. Biol. 22: 313-321.Google Scholar
  49. Plaisted, R.L., W.M. Tingey and J.C. Steffens, 1992. The germplasm release of NYL 235-4, a clone with resistance to the Colorado potato beetle. Am. Potato J. 69: 843-846.Google Scholar
  50. Poppy, G., 1997. Tritrophic interactions: Improving ecological understanding and biological control? Endeavour 21: 61-65.Google Scholar
  51. Price, P., 1986. Ecological aspects of host plant resistance and biological control: Interactions among three trophic levels. In: D.J. Boethel and R.D. Eikenbary (eds), Interactions of plant resistance and parasitoids and predation of insects, Ellis Horwood, West Sussex. pp. 11-30.Google Scholar
  52. Radcliffe, E.B., 1982. Insect pests of potato. Annu. Rev. Entomol. 27: 173-204.Google Scholar
  53. Rosenheim, J., 1998. Higher-order predators and the regulation of insect herbivore populations. Annu. Rev. Entomol. 43: 421-447.Google Scholar
  54. Rosenheim, J.A., H.K. Kaya, L.E. Ehler, J.J. Marois and B.A. Jaffee, 1995. Intraguild predation among biological-control agents: Theory and evidence. Biol. Control 5: 303-335.Google Scholar
  55. Roush, R.T., 1997. Bt-transgenic crops: Just another pretty insecticide or a chance for a new start in resistance management? Pestic. Sci. 51: 328-334.Google Scholar
  56. Salvucci, M., R. Rosell and J. Brown, 1998. Uptake and metabolism of leaf proteins by the silverleaf whitefly. Arch. Insect Physiol. Biochem. 39: 155-165.Google Scholar
  57. Schuler, T., G. Poppy, B. Kerry and I. Denholm, 1998. Insect-resistant transgenic plants. Trends Biotechnol. 16: 168-175.Google Scholar
  58. Schuler, T.H., G.M. Poppy, R.P.J. Poting, I. Denholm and B.R. Kerry, 1999. Interactions between insect tolerant genetically modified plants and natural enemies. In: P.J.W. Lutman (ed), Gene Flow and Agriculture Relevance for Transgenic Crops, British Crop Protection Council, Symposium proceedings no. 72. pp. 197-202.Google Scholar
  59. Shands, W., G.W. Simpson, C.F.W. Muesebeck and H.E. Wave, 1965. Parasites of potatoinfesting aphids in northeastern Maine. Maine Agric. Exp. Stn. Tech. Bull. T-19.Google Scholar
  60. Souissi, R. and B. Le Ru, 1998. Influence of plant of the cassava mealybug Phenacoccus manihoti (Hemiptera: Pseudococcidae) on biological characteristics of its parasitoid Apoanagyrus lopezi (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 88: 75-82.Google Scholar
  61. Stadler, B. and M. Mackauer, 1996. Influence of plant quality on interactions between the aphid parasitoid Ephedrus californicus Baker (Hymenoptera: Aphidiidae) and host, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Can. Entomol. 128: 27-39.Google Scholar
  62. Stapl, J.O., D.J. Waters, J.R. Ruberson and W.J. Lewis, 1997. Development and behavior of Spodoptera exigua (Lepidoptera: Noctuidae) larvae in choice tests with food substrates containing toxins of Bacillus thuringiensis. Biol. Control 11: 29-37.Google Scholar
  63. Sullivan, D.J. and W. Völkl, 1999. Hyperparasitism: multitrophic ecology and behavior. Annu. Rev. Entomol. 44: 291-315.Google Scholar
  64. Tingey, W.M., 1991. Potato glandular trichomes: defensive activity against insect attack. In: P.A. Hedlin (ed), Naturally Occuring Pest Bioregulators, American Chemical Society, Washington, D.C. pp. 126-135.Google Scholar
  65. van Emden, H.F., 1990. The interaction of host plant resistance to insects with other control measures. In: Proceedings of Brighton Crop Protection Conference, Pests and Diseases, The British crop protection Council, Brighton, UK. pp. 939-948.Google Scholar
  66. van Emden, H.F., 1995. Host plant-Aphidophaga interactions. Agric. Ecosystems Environ. 52: 3-11.Google Scholar
  67. van Lenteren, J.C., 1991. The role of the leaf surface in tritrophic interactions. Redia 74: 95-103.Google Scholar
  68. Walker, G.P., L.R. Nault and D.E. Simonet, 1984. Natural mortality factors acting on potato aphid Macrosiphum euphorbiae populations in processing-tomato fields in Ohio. Environ. Entomol. 13: 724-732.Google Scholar
  69. Walker, A.J., L. Ford, M.E.N. Majerus, I.E. Georghegan, N. Birch, J.A. Gatehouse and A.M.R. Gatehouse, 1998. Caracterisation of the mid-gut digestive proteinase activity of the twospot ladybird (Adalia bipunctata L.) and its sensitivity to proteinase inhibitors. Insect biochem. Mol. Biol. 28: 173-180.Google Scholar
  70. Westedt, A., D. Douches, W. Pett and E. Grafius, 1998. Evaluation of natural and engineered resistance mechanisms in Solanum tuberosum for resistance to Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Econ. Entomol. 91: 552-556.Google Scholar
  71. Wiseman, B.R., 1994. Plant resistance to insects in integrated pest management. Plant Dis. 79: 927-932.Google Scholar
  72. Wooton, J.T., 1994. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25: 443-466.Google Scholar
  73. Yencho, G.C. and W.M. Tingey, 1994. Glandular trichomes of Solanum berthaultii alter host preference of the Colorado potato beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 70: 217-225.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • A. Ashouri
    • 1
  • Dominique Michaud
    • 1
  • Conrad Cloutier
    • 1
  1. 1.Centre de Recherche en HorticultureUniversité Laval, Cité UniversitaireCanada

Personalised recommendations