Archives of Sexual Behavior

, Volume 31, Issue 1, pp 99–111

Masculinization Effects in the Auditory System

  • Dennis McFadden
Article

Abstract

Otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are different in several special populations of subjects. For females having opposite-sex co-twins (OSDZ females) and for homosexual and bisexual females, OAEs are masculinized. Certain AEP measures from homosexual and bisexual females also are masculinized. Certain AEP measures from homosexual males are hypermasculinized. These and other facts can be explained by assuming that these special populations received greater-than-normal exposures to androgens at some point(s) during development, possibly during prenatal development. It is proposed that some differences in androgenization may have been spatially and temporally localized rather than global, and that the localized response to androgen exposure sometimes may be nonmonotonic.

sexual orientation homosexuality auditory system masculinization hypermasculinization androgens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Arnold, A. P. (1999). Hormonal and nonhormonal mechanisms of sexual differentiation of the zebra finch brain: Embracing the null hypothesis. In A. Matsumoto (Ed.), Sexual differentiation of the brain (pp. 131-148). Boca Raton, FL: CRC Press.Google Scholar
  2. Arnold, A. P., & Breedlove, S. M. (1985). Organizational and activational effects of sex steroids on brain and behavior: A reanalysis. Hormones and Behavior, 19, 469-498.Google Scholar
  3. Bailey, J. M., Dunne, M. P., & Martin, N. G. (2000). Genetic and environmental influences on sexual orientation and its correlates in an Australian twin sample. Journal of Personality and Social Psychology, 78, 524-536.Google Scholar
  4. Bancroft, J., Sherwin, B. B., Alexander, G. M., Davidson, D. W., & Walker, A. (1991). Oral contraceptives, androgens, and the sexuality of young women. II: The role of androgens. Archives of Sexual Behavior, 20, 121-135.Google Scholar
  5. Baum, M. J., & Schretlen, P. (1975). Neuroendocrine effects of perinatal androgenization in the male ferret. In W. H. Gispen, T. B. Van Wimersma Greidanus, B. Bohus, & D. de Wied (Eds.), Progress in Brain Research (Vol. 42, pp. 343-355). Elsevier, Amsterdam.Google Scholar
  6. Beach, F. A. (1975). Hormonal modifications of sexually dimorphic behavior. Psychoneuroendocrinology, 1, 3-23.Google Scholar
  7. Bell, A. (1992). Circadian and menstrual rhythms in frequency variations of spontaneous otoacoustic emissions from human ears. Hearing Research, 58, 91-100.Google Scholar
  8. Bilger, R., Matthies, M. L., Hammel, D. R., & Demorest, M. E. (1990). Genetic implications of gender differences in the prevalence of spontaneous otoacoustic emissions. Journal of Speech and Hearing Research, 33, 418-432.Google Scholar
  9. Bogaert, A. F., & Hershberger, S. (1999). The relation between sexual orientation and penile size. Archives of Sexual Behavior, 28, 213-221.Google Scholar
  10. Brown-Grant, K., Fink, G., Greig, F., & Murray, M. A. F. (1975). Altered sexual development in male rats after oestrogen administration during the neonatal period. Journal of Reproduction and Fertility, 44, 25-42.Google Scholar
  11. Brownell, W. E., Bader, C. R., Bertrand, D., & de Ribaupierre, Y. (1985). Evoked mechanical responses of isolated cochlear outer hair-cells. Science, 227, 194-196.Google Scholar
  12. Burns, E. M., Arehart, K. H., & Campbell, S. L. (1992). Prevalence of spontaneous otoacoustic emissions in neonates. Journal of the Acoustical Society of America, 91, 1571-1575.Google Scholar
  13. Burns, E. M., Campbell, S. L., & Arehart, K. H. (1994). Longitudinal measurements of spontaneous otoacoustic emissions in infants. Journal of the Acoustical Society of America, 95, 385-394.Google Scholar
  14. Burns, E. M., Campbell, S. L., Arehart, K. H., & Keefe, D. H. (1993). Long-term stability of spontaneous otoacoustic emissions [Abstract]. Association for Research in Otolaryngology, 16, 98.Google Scholar
  15. Chiarenza, G. A., D'Ambrosio, G. M., & Cazzullo, A. G. (1988). Sex and ear differences of brain-stem acoustic evoked potentials in a sample of normal full-term newborns: Normative study. Electroencephalography and Clinical Neurophysiology, 71, 357-366.Google Scholar
  16. Clark, M. M., & Galef, B. G., Jr. (1998). Effects of intrauterine position on the behavior and genital morphology of litter-bearing rodents. Developmental Neuropsychology, 14, 197-211.Google Scholar
  17. Clark, M. M., Robertson, R. K., & Galef, B. G., Jr. (1996). Effects of perinatal testosterone on handedness of gerbils: Support for part of the Geschwind-Galaburda hypothesis. Behavioral Neuroscience, 110, 1-5.Google Scholar
  18. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159.Google Scholar
  19. Davis, H. (1983). An active process in cochlear mechanics. Hearing Research, 9, 79-90.Google Scholar
  20. Dempsey, P. J., Townsend, G. C., & Richards, L. C. (1999). Increased tooth crown size in females with twin brothers: Evidence for hormonal diffusion between human twins in utero. American Journal of Human Biology, 11, 577-586.Google Scholar
  21. Diamond, M., Llacuna, A., & Wong, C. L. (1973). Sex behavior after neonatal progesterone, testosterone, estrogen, or antiandrogens. Hormones and Behavior, 4, 73-88.Google Scholar
  22. Elkind-Hirsch, K. E., Stoner, W. R., Stach, B. A., & Jerger, J. F. (1992). Estrogen influences auditory brainstem responses during the normal menstrual cycle. Hearing Research, 60, 143-148.Google Scholar
  23. Elkind-Hirsch, K. E., Wallace, E., Malinak, L. R., & Jerger, J. J. (1994). Sex hormones regulate ABR latency. Otolaryngology-Head and Neck Surgery, 110, 46-52.Google Scholar
  24. Franklin, D. J., McCoy, M. J., Martin, G. K., & Lonsbury-Martin, B. L. (1992). Test/retest reliability of distortion-product and transiently evoked otoacoustic emissions. Ear and Hearing, 13, 417-429.Google Scholar
  25. Goy, R.W., Bercovitch, F. B., & McBrair, M. C. (1988). Behavioral masculinization is independent of genital masculinization in prenatally androgenized female rhesus macaques. Hormones and Behavior, 22, 552-571.Google Scholar
  26. Haggerty, H. S., Lusted, H. S., & Morton, S. C. (1993). Statistical quantification of 24-hour and monthly variabilities of spontaneous otoacoustic emission frequency in humans. Hearing Research, 70, 31-49.Google Scholar
  27. Hall, J.W., III. (1992). Handbook of auditory evoked responses. Boston: Allyn & Bacon.Google Scholar
  28. Hall, J. A. Y., & Kimura, D. (1995). Sexual orientation and performance on sexually dimorphic motor tasks. Archives of Sexual Behavior, 24, 395-407.Google Scholar
  29. Henderson, B. A., & Berenbaum, S. A. (1997). Sex-typed play in opposite-sex twins. Developmental Psychobiology, 31, 115-123.Google Scholar
  30. Hull, E. M., Nishita, J. K., Bitran, D., & Dalterio, S. (1984). Perinatal dopamine-related drugs demasculinize rats. Science, 224, 1011-1013.Google Scholar
  31. Jerger, J., & Johnson, K. (1988). Interactions of age, gender, and sensorineural hearing loss on ABR latency. Ear and Hearing, 9, 168-176.Google Scholar
  32. Kemp, D. T. (1978). Stimulated acoustic emissions from within the human auditory system. Journal of the Acoustical Society of America, 64, 1386-1391.Google Scholar
  33. Kemp, D. T. (1979). Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Archives of Otology, Rhinology, and Laryngology, 224, 37-45.Google Scholar
  34. Lalumière, M. L., Blanchard, R., & Zucker, K. J. (2000). Sexual orientation and handedness in men and women: A meta-analysis. Psychological Bulletin, 126, 575-592.Google Scholar
  35. Lauter, J. L., & Karzon, R. G. (1990a). Individual differences in auditory electric responses: Comparisons of between-subject and withinsubject variability. IV: Latency-variability comparisons in early, middle, and late responses. Scandinavian Audiology, 19, 175-182.Google Scholar
  36. Lauter, J. L., & Karzon, R. G. (1990b). Individual differences in auditory electric responses: Comparisons of between-subject and withinsubject variability. V: Amplitude-variability comparisons in early, middle, and late responses. Scandinavian Audiology, 19, 201-206.Google Scholar
  37. Loehlin, J. C., & Martin, N. G. (1998). A comparison of adult female twins from opposite-sex and same-sex pairs on variables related to reproduction. Behavior Genetics, 28, 21-27.Google Scholar
  38. Loehlin, J. C., & McFadden, D. (2001). Otoacoustic emissions and auditory evoked potentials and traits related to sex and sexual orientation. Manuscript submitted for publication.Google Scholar
  39. McCormick, C. M., & Witelson, S. F. (1991). A cognitive profile of homosexual men compared to heterosexual men and women. Psychoneuroendocrinology, 16, 459-473.Google Scholar
  40. McFadden, D. (1982). Tinnitus: Facts, theories, and treatments. Washington, DC: National Academy Press.Google Scholar
  41. McFadden, D. (1993a). A speculation about the parallel ear asymmetries and sex differences in hearing sensitivity and otoacoustic emissions. Hearing Research, 68, 143-151.Google Scholar
  42. McFadden, D. (1993b). Amasculinizing effect on the auditory systems of human females having male co-twins. Proceedings of the National Academy of Sciences of the United States of America, 90, 11900-11904.Google Scholar
  43. McFadden, D. (1998). Sex differences in the auditory system. Developmental Neuropsychology, 14, 261-298.Google Scholar
  44. McFadden, D. (2000). Masculinizing effects on otoacoustic emissions and auditory evoked potentials in women using oral contraceptives. Hearing Research, 142, 22-33.Google Scholar
  45. McFadden, D., & Champlin, C. A. (2000). Comparison of auditory evoked potentials in heterosexual, homosexual, and bisexual males and females. Journal of the Association for Research in Otolaryngology, 1, 89-99.Google Scholar
  46. McFadden, D., & Loehlin, J. C. (1995). Onthe heritability of spontaneous otoacoustic emissions: A twins study. Hearing Research, 85, 181-198.Google Scholar
  47. McFadden, D., Loehlin, J. C., & Pasanen, E. G. (1996). Additional findings on heritability and prenatal masculinization of cochlear mechanisms: Click-evoked otoacoustic emissions. Hearing Research, 97, 102-119.Google Scholar
  48. McFadden, D., & Mishra, R. (1993). On the relation between hearing sensitivity and otoacoustic emissions. Hearing Research, 71, 208-213.Google Scholar
  49. McFadden, D., & Pasanen, E. G. (1998). Comparison of the auditory systems of heterosexuals and homosexuals: Click-evoked otoacoustic emissions. Proceedings of the National Academy of Sciences of the United States of America, 95, 2709-2713.Google Scholar
  50. McFadden, D., & Pasanen, E. G. (1999). Spontaneous otoacoustic emissions in heterosexuals, homosexuals, and bisexuals. Journal of the Acoustical Society of America, 105, 2403-2413.Google Scholar
  51. McFadden, D., Pasanen, E. G., & Callaway, N. L. (1998). Changes in otoacoustic emissions in a transsexual male during treatment with estrogen. Journal of the Acoustical Society of America, 104, 1555-1558.Google Scholar
  52. McGuire, L. S., Ryan, K. O., & Omenn, G. S. (1975). Congenital adrenal hyperplasia. II: Cognitive and behavioral studies. Behavior Genetics, 5, 175-188.Google Scholar
  53. Miller, E. M. (1994). Prenatal sex hormone transfer: A reason to study opposite-sex twins. Personality and Individual Differences, 17, 511-529.Google Scholar
  54. Norton, S. J., Gorga, M. P., Widen, J. E., Folsom, R. C., Sininger, Y., Cone-Wesson, B., et al. (2000). Identification of neonatal hearing impairment:Amulticenter investigation. Ear and Hearing, 21, 348-356.Google Scholar
  55. Pasanen, E. G., & McFadden, D. (2000). An automated procedure for detection and measurement of spontaneous otoacoustic emissions. Journal of the Acoustical Society of America, 108, 1105-1116.Google Scholar
  56. Pollak, E. I., & Sachs, B. D. (1975). Masculine sexual behavior and morphology: Paradoxical effects of perinatal androgen treatment in male and female rats. Behavioral Biology, 13, 401-411.Google Scholar
  57. Prieve, B. A., Gorga, M. P., Schmidt, A., Neely, S., Peters, J., Schulte, L., et al. (1993). Analysis of transient-evoked otoacoustic emissions in normal-hearing and hearing-impaired ears. Journal of the Acoustical Society of America, 93, 3308-3319.Google Scholar
  58. Probst, R., Lonsbury-Martin, B. L., & Martin, G. K. (1991). A review of otoacoustic emissions. Journal of the Acoustical Society of America, 89, 2027-2067.Google Scholar
  59. Robinson, S. J., & Manning, J. T. (2000). The ratio of 2nd to 4th digit length and male homosexuality. Evolution and Human Behavior, 21, 333-345.Google Scholar
  60. Sachs, B. D., & Thomas, D. A. (1985). Differential effects of perinatal androgen treatment on sexually dimorphic characteristics in rats. Physiology and Behavior, 34, 735-742.Google Scholar
  61. Scamvougeras, A., Witelson, S. F., Bronskill, M., Stanchev, P., Black, S., Cheung, G., et al. (1994). Sexual orientation and anatomy of the corpus callosum [Abstract]. Society for Neuroscience, 20, 1425.Google Scholar
  62. Shera, C. A., & Guinan, J. J., Jr. (1999). Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. Journal of the Acoustical Society of America, 105, 782-798.Google Scholar
  63. Sininger, Y. S., Cone-Wesson, B., & Abdala, C. (1998). Gender distinctions and lateral asymmetry in the low-level auditory brainstem response of the human neonate. Hearing Research, 126, 58-66.Google Scholar
  64. Smail, P. J., Reyes, F. I., Winter, J. S. D., & Faiman, C. (1981). The fetal hormonal environment and its effect on the morphogenesis of the genital system. In S. J. Kogan and E. S. E. Hafez (Eds.), Pediatric andrology (pp. 9-19). The Hague: Martinus Nijhoff.Google Scholar
  65. Talmadge, C. L., Long, G. R., Murphy, W. J., & Tubis, A. (1993). New off-line method for detecting spontaneous otoacoustic emissions in human subjects. Hearing Research, 71, 170-182.Google Scholar
  66. vom Saal, F. S. (1989). Sexual differentiation in litter-bearing mammals: Influence of sex of adjacent fetuses in utero. Journal of Animal Science, 67, 1824-1840.Google Scholar
  67. Wallen, K., Herman, R. A., & Zehr, J. L. (2001, July). Late gestation androgen hypermasculinizes juvenile behavior in male rhesus monkeys. Poster session presented at the meeting of the International Academy of Sex Research, Montreal, Canada.Google Scholar
  68. Wegesin, D. J. (1998). Event-related potentials in homosexual and heterosexual men and women: Sex-dimorphic patterns in verbal asymmetries and mental rotation. Brain and Cognition, 36, 73-92.Google Scholar
  69. Whitehead, M. L., Kamal, N., Lonsbury-Martin, B. L., & Martin, G. K. (1993). Spontaneous otoacoustic emissions in different racial groups. Scandinavian Audiology, 23, 3-10.Google Scholar
  70. Williams, T. J., Pepitone, M. E., Christensen, S. E., Cooke, B. M., Huberman, A. D., Breedlove, N. J., et al. (2000). Finger-length ratios and sexual orientation. Nature, 404, 455-456.Google Scholar
  71. Woodson, J. C., & Gorski, R. A. (1999). Structural sex differences in the mammalian brain: Reconsidering the male/female dichotomy. In A. Matsumoto (Ed.), Sexual differentiation of the brain (pp. 229-255). Boca Raton, FL: CRC Press.Google Scholar
  72. Zucker, K. J., Beaulieu, N., Bradley, S. J., Grimshaw, G. M., & Wilcox, A. (2001). Handedness in boys with gender identity disorder. Journal of Child Psychology and Psychiatry, 42, 767-776.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Dennis McFadden
    • 1
  1. 1.Department of Psychology, Institute for NeuroscienceUniversity of TexasAustin

Personalised recommendations