Cardiovascular Engineering: An International Journal

, Volume 1, Issue 3, pp 127–136

Iontophoresis: Modeling, Methodology, and Evaluation

  • Anthony F. Coston
  • John K.-J. Li


Iontophoresis is a noninvasive and painless means of delivering various drugs into the body. Many drugs, in particular peptides, proteins, and hormones are given parenterally either through intravenous, subcutaneous, or intramuscular injections. Transdermal delivery using iontophoresis circumvents hepatic clearance and breakdown by the gastric juices thus allowing local high concentrations of active compounds. Local delivery of these compounds is much safer than parenteral routes since lower concentrations are necessary to reach the target sites. The present analysis focuses on previously overlooked areas including skin impedance, iontophoretic waveforms, skin modeling, optimization of delivery parameters, and their effects on iontophoretic delivery. Particular emphases are placed on modeling, methodology, and evaluations of the efficacy of iontophoresis.

iontophoresis transdermal drug delivery skin impedance model optimal waveforms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen DG and Monteiro-Riviere NA. Alteration of cytokeratin expression following transdermal lidocaine hydrochloride iontophoresis. Pharm Res 16: 1487-1490, 1999.Google Scholar
  2. Ashburn MA, Gauthier M, Love G, Basta S, Gaylord B, and Kessler K. Iontophoretic administration of 2% lidocaine HCL and 1:100,000 epinephrine in humans. Clin J Pain 13: 22-26, 1997.Google Scholar
  3. Avitall B, Hare J, Zander G, Bbockoff C, Tchou P, Jazayeri M, and Akhtar M. Iontophoertic transmyocardial drug therapy: A novel approach to antiarrhytmic drug therapy. Circulation 85: 1582-1593, 1992.Google Scholar
  4. Bagniefski T and Burnette RA. Comparison of pulsed and continuous current iontophoresis. J Cardiovasc Release 11: 113-122, 1990.Google Scholar
  5. Banga AK and Chien YW. Iontophoretic delivery of drugs: Fundamentals, developments, and biomedical applications. J Controlled Release 7: 1-24, 1988a.Google Scholar
  6. Banga AK and Chien YW. Systemic delivery of therapeutic peptides and proteins. Int J Pharm 48: 15-50, 1988b.Google Scholar
  7. Banga AK, Chien YW, Siddiqui O, Sun Y, Shi WM, and Liu JC. Transdermal iontophoretic delivery of therapeutic peptides/proteins: I. Insulin. Ann NY Acad Sci 507: 32-51, 1987.Google Scholar
  8. Behl CR, Kumar S, Malick AW, del Terzo S, Higuchi WI, and Nash RA. Iontophoretic delivery: Effects of physiochemical factors on the skin uptake of nonpeptide drugs. J Pharm Sci 78: 355-360, 1989.Google Scholar
  9. Brand RM and Guy RH. Iontophoresis of nicotine in vitro: Pulsatile drug delivery across the skin. J Control Release 33: 285-292, 1995.Google Scholar
  10. Chang SL, Hofmann GA, Zhang L, Deftos LJ, and Banga AJ. The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J Control Release 66: 127-133, 2000.Google Scholar
  11. Chesnoy S, Durand D, Doucet J, and Couarraze G. Structural parameters involved in the permeation of propoanalol HCL by iontophoresis and enhancers. J Controlled Release 58: 163-175, 1999.Google Scholar
  12. Chien YW. Systemic delivery of peptide-based pharmaceuticals by transdermal periodic iontophoretic system. In Gurny R and Teubner A, Eds., Dermal and transdermal drug delivery. Stuttgart: Wiss.Verl.-Ges, 1993.Google Scholar
  13. Chien YW and Banga AK. Iontophoretic (transdermal) delivery of drugs: Overview of historical development. J Pharm Sci 78: 353-354, 1989a.Google Scholar
  14. Chien YW, Siddiqui O, Shi WM, Lelawongs P, and Liu JC. Direct current iontophoretic transdermal delivery of peptide and protein drugs. J Pharm Sci 78: 376-383, 1989b.Google Scholar
  15. Costello CT and Jeske AH. Iontophoresis: Applications in transdermal medication delivery. Phys Ther 75: 554-563, 1995.Google Scholar
  16. Craane-van Hinsberg WHM, Bax L, Flinterman NHM, Verhoef J, Junginger HE, and Bodde HE. Iontophoresis of a model peptide across human skin in vitro: Effects of iontophoresis protocol, pH, and ionic strength on peptide flux and skin impedance. Pharm Res 11: 1296-1300, 1994.Google Scholar
  17. Cullander C. What are the pathways of iontophoretic current flowthrough the mammalian skin? Adv Drug Deliv Rev 9: 119-135, 1992.Google Scholar
  18. Denuzzio JD and Berner B. Electrochemical and iontophoretic studies of human skin. J Controlled Release 11: 105-112, 1990.Google Scholar
  19. Edelberg R. Electrical properties of Skin. In Elden HR, Ed., Biophysical properties of the skin. New York: Wiley, 1971.Google Scholar
  20. Faes TJ, Van Der Meij HA, de Munck JC, and Heethar RM. The electric resistivity of human tissues (100 Hz-10 Mhz): A meta-analysis of review studies. Physiol Meas 20: R1-R10, 1999.Google Scholar
  21. Fernandez-Ortiz A, Beat JM, Chesebro J, Fuster V, and Badimon JJ. Potential applications of iontophoresis for local drug delivery of vascualar diseases. J Intervent Cardiol 8: 420-426, 1995.Google Scholar
  22. Fernandez-Ortiz A, Beat JM, Mailhac A, Falk E, Badimon L, Fallon JT, Fuster V, Chesebro JH, and Badimon JJ. A new approach for local intravascular drug delivery: Iontophoretic balloon. Circulation 89: 1518-1522, 1994.Google Scholar
  23. Gangarosa LP. Defining a practical solution for iontophoretic local anesthesia of skin. Methods findings exp clin pharmacol 3: 83-94, 1981.Google Scholar
  24. Gangarosa LP, No-Hee P, Wiggins CA, and Hill JM. Increased penetration of nonelectrolytes into mouse skin during iontophoretic water transport (Iontohydrokinesis). J Pharmacol Exp Ther 212: 377-381, 1980.Google Scholar
  25. Gardiner TW, Armstrong-James M, Woodburn Caan A, Wightman RM, and Rebec GV. Modulation of neostriatal activity by iontophoresis of ascorbic acid. Brain Res 344: 181-185, 1985.Google Scholar
  26. Geddes LA and Baker LE. The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5: 271-293, 1967.Google Scholar
  27. Grimnes S. Pathways of ionic flow through human skin in vivo. Acta Derm Venereol 64: 93-98, 1984.Google Scholar
  28. Green PG. Iontophoretic delivery of peptide drugs. J Controlled Release 41: 33-48, 1996.Google Scholar
  29. Greene PG, Hinz RS, Cullander C, Yamanae G, and Guy RH. Iontophoretic delivery of amino acids and amino acid derivatives across the skin in vitro. Pharm Res 8: 1113-1120, 1991.Google Scholar
  30. Gupta SK, Kumar S, Bolton S, Behl CR, and Malick AW. Optimization of iontophoretic transdermal delivery of a peptide and a non-peptide drug. J Control Release 30: 253-261, 1994.Google Scholar
  31. Hodgkin DD, Pierpont GL, Hildebrand KR, and Gornick CC. Electrophysiologic characteristics of a pulsed iontophoretic drug-delivery system in coronary arteries. J Cardiovasc Pharmacol 29: 39-44, 1997.Google Scholar
  32. Hoogstraate AJ, Srinivasan V, Sims SM, and Higuchi WI. Iontophoretic enhancement of peptides: Behaviour of leuprolide versus model permeants. J Control Release 31: 41-47, 1994.Google Scholar
  33. Howard JP, Drake TR, and Kellogg DL. Effects of alternating current iontophoresis on drug delivery. Arch Phys Med Rehab 76: 463-466, 1995.Google Scholar
  34. Huang YY, Wu SM, Wang CY, and Jiang TS. A strategy to optimize the operation conditions in iontophoretic transdermal delivery of pilocarpine. Drug dev ind pharm 21: 1631-1648, 1995.Google Scholar
  35. Kalia YN and Guy RH. The electrical characteristics of human skin in vivo. Pharm Res 12: 1605-1613, 1995.Google Scholar
  36. Kassan DG, Lynch AM, and Stiller MJ. Physical enhancement of dermatologic drug delivery: Iontophoresis and phonophoresis. J Am Acad Dermatol 34: 657-666, 1996.Google Scholar
  37. Lai PM and Roberts MS. An analysis of solute structure-human epidermal transport relationships in epidermal iontophoresis using the ionic mobility: Pore model. J Control Release 58: 323-333, 1999.Google Scholar
  38. Langkjaer L, Brange J, Grodsky GM, and Guy RH. Iontophoresis of monomeric insulin analogues in vitro: Effects of insulin charge and skin pretreatment. J Control Release 51: 47-56, 1998.Google Scholar
  39. Lawler JC, Davis MJ, and Griffith EC. Electrical characteristics of the skin: The impedance of the surface sheath and deep tissues. J Invest Dermatol 34: 301-308, 1960.Google Scholar
  40. Lelawongs P, Liu JC, and Chien YW. Transdermal iontophoretic delivery of arginine-vasopressin (II): Evaluation of electrical and operational factors. Int J Pharm 61: 179-188, 1990.Google Scholar
  41. Liu JC, Sun Y, Siddiqui O, Chien YW, Shi W, and Li J. Blood glucose in diabetic rats by transdermal iontophoretic delivery of insulin. Int J Pharm 44: 197-204, 1988.Google Scholar
  42. Lykken DT. Square-wave analysis of skin impedance. Psychophysiology 7: 262-275, 1970.Google Scholar
  43. Mitchel JF, Azrin MA, Fram DB, Bow LM, and McKay RG. Localized delivery of heparin to angioplasty sites with iontophoresis. Catheterization Cardiovasc Diagn 41: 315-323, 1997.Google Scholar
  44. Morimoto Y, Numajiri S, and Sugibayashi K. Effect of ion Species and their concentration on the iontophoretic transport of benzoic acid through poly (vinyl acetate) membrane. Chem Pharmacol Bull 39: 2412-2416, 1991.Google Scholar
  45. Murthy SN. Magnetophoresis: An approach to enhance transdermal drug diffusion. Pharmazie 54: 377-379, 1999.Google Scholar
  46. Nair V, Pillai O, Poduri R, and Panchagnula R. Transdermal iontophoresis. Part 1: Basic principles and considerations. Methods Findings Exp Clin Pharmacol 21: 139-151, 1999.Google Scholar
  47. Numajiri S, Sakurai H, Sugibayashi K, Morimoto Y, Omiya H, Takenaka H, and Akiyama N. Comparison of depolarizing and direct current systems on iontophoretic enhancement of transport of sodium benzoate through human and hairless Rat skin. J Pharm Pharmacol 45: 610-613, 1993.Google Scholar
  48. Okabe K, Yamaguchi H, and Kawai Y. New iontophoretic transdermal administration of the beta-blocker metoprolol. J Control Release 4: 79-85, 1986.Google Scholar
  49. Pierce RC and Rebec GV. Iontophoresis in the neostriatum of awake, unrestrained Rats: Differential effects of dopamine, glutamate and ascorbate on motor-and nonmotor-related neurons. Neuroscience 67: 313-324, 1995.Google Scholar
  50. Pikal MJ. The role of electrosmotic flow in transdermal iontophoreis. Adv Drug Deliv Rev 9: 201-237, 1992.Google Scholar
  51. Pliquett U and Weaver JC. Transport of a charged molecule across the human epidermis due to electroporation. J Control Release 38: 1-10, 1996.Google Scholar
  52. Pliquett UF, Gusbeth CA, and Weaver JC. Non-linearity of molecular transport through human skin due to electric stimulus. J Controlled Release 68: 373-386, 2000.Google Scholar
  53. Pliquett UF, Vanbever R, Preat V, and Weaver JC. Local transport regions (LTRs) in human stratum corneum due to long and short “high voltage” pulses. Bioelectrochem Bioenerg 47: 151-161, 1998.Google Scholar
  54. Plutchik R and Hirsh HR. Skin impedance and phase angle as a function of frequency and current. Science 141: 927-928, 1963.Google Scholar
  55. Prausnitz MR, Edelman ER, Gimm JA, Langer R, and Weaver JC. Transdermal delivery of heparin by skin electroporation. Biotechnology 13: 1205-1209, 1995.Google Scholar
  56. Prausnitz MR, Pliquett U, Langer R, and Weaver JC. Rapid temporal control of transdermal drug delivery by electroporation. Pharm Res 11: 1834-1837, 1994.Google Scholar
  57. Price GJ. Sonochemistry and drug delivery. In Duck FA, Baker AC, and Starritt HZ, Eds., Ultrasound and Medicine. Philadelphia: Institute of physics publishing, 1997.Google Scholar
  58. Reinauer S, Neusser A, Schauf G, and Holzle E. Iontophoresis with alternating current and direct current offset (AC/DC iontophoresis): A new approach for the treatment of hyperhidrosis. Br J Dermatol 129: 166-169, 1993.Google Scholar
  59. Riviere JE and Heit MC. Electrically-assisted transdermal drug delivery. Pharm Res 14: 687-697, 1997.Google Scholar
  60. Riviere JE, Monteiro-Riviere NA, and Inman AO. Determination of lidocaine concentrations in skin after transdermal iontophoresis: Effects of vasoactive drugs. Pharm Res 9: 211-214, 1992.Google Scholar
  61. Rosell J, Columinas J, Riu P, Pallas-Areny R, and Webster JG. Skin impedance from 1 Hz to 1 MHz. IEEE Trans Biomed Eng 35: 649-651, 1988.Google Scholar
  62. Rosendal T. Concluding studies on the conducting properties of human skin to alternating current. Acta Phys Scand 9: 39-49, 1945.Google Scholar
  63. Rosendal T. Studies on the conducting properties of the human skin to direct current. Acta Phys Scand 5: 130-151, 1943.Google Scholar
  64. Saraf S and Dixit VK. Influence of electrical factors on in vitro iontophoretic delivery of timolol maleate. Drug Dev Ind Pharm 22: 175-179, 1996.Google Scholar
  65. Scott ER, Laplaza AI, White HS, and Phipps JB. Transport of ionic species in skin: Contribution of pores to the overall skin conductance. Pharm Res 10: 1699-1709, 1993.Google Scholar
  66. Scott N. Current status and potential applications of drug delivery balloon catheters. J Intervent Cardiol 8: 406-419, 1995.Google Scholar
  67. Sharata HH and Burnette RR. Effect of dipolar aprotic permeability enhancers on the basal stratum corneum. J Pharm Sci 77: 27-32, 1988.Google Scholar
  68. Shi W. The Physical Basis of Transdermal Periodic Iontophoretic Drug Delivery and Its Application to Diabetic and Hypertension Studies, PhD. Thesis, Rutgers University, 1988.Google Scholar
  69. Siddiqui O, Sun Y, Liu J-C, and Chien YW. Facilitated transdermal transport of insulin. J Pharm Sci 76: 341-345, 1987.Google Scholar
  70. Sims SM, Higuchi WI, and Srinivasan V. Skin alteration and convective solvent flow effects during iontophoresis: I. neutral solute transport across human skin. Int J Pharm 69: 109-121, 1991.Google Scholar
  71. Singh J. Effect of pH on iontophoretic and passive transport of p-am Benzoic acid through full thickness rat skin. Pharmazie 45: 634-635, 1990.Google Scholar
  72. Singh J and Roberts MS. Transdermal delivery of drugs by iontophoresis: A review. Drug Design Deliv 4: 1-12, 1989.Google Scholar
  73. Singh S, Bi M, Jayaswal SB, and Singh J. Effect of current densisty on the iontophoretic permeability of benzyl alcohol and surface characteristics of human epidermis. Int J Pharm 166: 157-166, 1998.Google Scholar
  74. Srinivasan V, Higuchi WI, Sims SM, Ghanem AH, and Behl CR. Transdermal iontophoretic drug delivery: Mechanistic analysis and application to polypeptide delivery. J Pharm Sci 78: 370-375, 1989.Google Scholar
  75. Srinivasan V, Su MH, Higuchi, WI, and Behl CR. Iontophoresis of polypeptides: Effect of ethanol pretreatment of human skin. J Pharm Sci 79: 588-591, 1990.Google Scholar
  76. Sun Y and Xue H. Important parameters affecting iontophoretic transdermal delivery of insulin. Proc Int Symp Controlled Release Bioact Mater 17: 202-203, 1990.Google Scholar
  77. Thysman S, Tasset C, and Preat V. Transdermal iontophoresis of fentanyl: Delivery and mechanistic analysis. Int J Pharm 101: 105-113, 1994.Google Scholar
  78. Tregear RT. Interpretation of skin. impedance measurements. Nature 205: 600-601, 1965.Google Scholar
  79. Tregear RT. Physical Functions of the Skin. New York: Academic Press, 1966.Google Scholar
  80. Tyle P. Iontophoretic devices for drug delivery. Pharm Res 3: 318-326, 1986.Google Scholar
  81. van Boxtel A. Skin resistance during square-wave electrical pulses of 1 to 10 mA. Med Biol Eng Comput 15: 679-687, 1977.Google Scholar
  82. Vanbever R, Langers G, Montmayeur S, and Preat V. Transdermal delivery of fentanyl: Rapid onset of analgesia using skin electroporation. J Controlled Release 50: 225-235, 1998.Google Scholar
  83. Wahlberg JE. Transepidermal or transfollicular absorption?: In vivo and in vitro studies in hairy and non-hairy guinea Pig skin with sodium (22Na) and mercuric (203Hg) chlorides. Acta Derm Venerol 48: 336-344, 1968.Google Scholar
  84. Wang S, Kara M, and Krishnan TR. Transdermal delivery of cyclosporin-A using electroporation. J Control Release 50: 61-70, 1998.Google Scholar
  85. Weaver JC, Vaughan TE, and Chizmadzhev Y. Theory of electrical creation of aqueous pathways across skin transport barriers. Adv Drug Deliv Rev 35: 21-39, 1999.Google Scholar
  86. Wertz PW and Downing DT. Stratum corneum: Biological and biochemical considerations. In Hadgraft J, Guy RH, Eds., Transdermal Drug Delivery: Developmental Issues and Research Initiatives. New York: Marcel Dekker, 1989.Google Scholar
  87. Yamamoto T and Yamamoto Y. Dielectric constant and resistivity of epidermal stratum corneum. Med Biol Eng 14: 494-499, 1976.Google Scholar
  88. Yamamoto T and Yamamoto Y. Analysis for the change of skin impedance. Med Biol Eng Comput 15: 219-227, 1977.Google Scholar
  89. Yamamoto T and Yamamoto Y. Dispersion and correlation of the parameters for skin impedance. Med and Biol Eng Comput 16: 592-594, 1978.Google Scholar
  90. Yamamoto T and Yamamoto Y. Non-linear electrical properies of the skin in the low frequencty range. Med Biol Eng Comput 19: 302-310, 1981.Google Scholar
  91. Yamamoto Y. Measurement and analysis of skin electrical impedance. Acta Derm Venereol Suppl (Stockh) 185: 34-38, 1994.Google Scholar
  92. Yoshida NH and Roberts MS. Structure-transport relationships in transdermal iontophoresis. Adv Drug Deliv Rev 9: 239-264, 1992.Google Scholar
  93. Zakzewski CA and Li JK-J. Pulsed mode constant current iontophoretic transdermal metoprolol tartrate delivery in established acute hypertensive Rabbits. J Controlled Release 17: 157-162, 1991.Google Scholar
  94. Zakzewski CA, Wasilewski J, Cawley P, and Ford W. Transdermal delivery of regular insulin to chronic diabetic Rats: Effect of skin preparation and electrical enhancement. J Control Release 50: 267-272, 1998.Google Scholar
  95. Zakzewski C, Amory DW, Jasaitis DK, and Li JK-J. Iontophoretically enhanced transdermal delivery of an ACE inhibitor in induced hypertensive Rabbits: Preliminary report. Cardiovasc Drugs Ther 6: 589-595, 1992.Google Scholar
  96. Zakzewski C, Li JK-J, Amory DW, Jensen JC, and Kalatzis-Manolakis E. Design and implementation of a constant-current pulsed iontophoretic stimulation device. Med Biol Eng Comput 34: 484-488, 1996.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Anthony F. Coston
    • 1
  • John K.-J. Li
    • 2
  1. 1.ETHICON Inc.Somerville
  2. 2.Cardiovascular Research Laboratory, Department of Biomedical EngineeringRutgers UniversityPiscataway

Personalised recommendations