Journal of Statistical Physics

, Volume 106, Issue 5–6, pp 993–1018 | Cite as

A Consistent BGK-Type Model for Gas Mixtures

  • Pierre Andries
  • Kazuo Aoki
  • Benoit Perthame


We introduce a relaxation collision operator for a mixture of gases which satisfies several fundamental properties. Different BGK type collision operators for gas mixtures have been introduced earlier but none of them could satisfy all the basic physical properties: positivity, correct exchange coefficients, entropy inequality, indifferentiability principle. We show that all those properties are verified for our model, and we derive its Navier–Stokes limit by a Chapman–Enskog expansion.

kinetic theory gas mixtures BGK-type models entropy Chapman–Enskog expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. L. Bhatnagar, E. P. Gross, and K. Krook, A model for collision processes in gases, Phys. Rev. 94:51–524 (1954).Google Scholar
  2. 2.
    P. Welander, On the temperature jump in a rarefied gas, Ark. Fys. 7:50–553 (1954).Google Scholar
  3. 3.
    P. Andries, P. LeTallec, J. P. Perlat, and B. Perthame, The Gaussian BGK model of Boltzmann equation with small Prandtl numbers, European J. Mechanics (B fluids) 81–830 (2000).Google Scholar
  4. 4.
    Y. Sone, K. Aoki, and T. Doi, Kinetic theory analysis of gas flows condensing on a plane condensed phase: Case of a mixture of a vapor and a noncondensable gas, Transport Theory and Statistical Physics 21(–6):29–328 (1992).Google Scholar
  5. 5.
    S. Dellacherie and N. Rency, Relations de fermeture pour la système des équations d'Euler multiespèces, CEA Report (2001).Google Scholar
  6. 6.
    E. P. Gross and M. Krook, Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev. 102:593 (1956).Google Scholar
  7. 7.
    L. Sirovich, Kinetic modeling of gas mixtures, Phys. of Fluids 5:90–918 (1962).Google Scholar
  8. 8.
    E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. of Fluids 10(9):192–1940 (1967).Google Scholar
  9. 9.
    V. Garzó, A. Santos, and J. J. Brey, A kinetic model for a multicomponent gas, Phys. of Fluids A 1(2):38–383 (1989).Google Scholar
  10. 10.
    C. Bardos, F. Golse, and C. D. Levermore, The acoustic limit for the Boltzmann equation, Arch. Ration. Mech. Anal. 153(3):17–204 (2000).Google Scholar
  11. 11.
    Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhauser), to appear.Google Scholar
  12. 12.
    S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).Google Scholar
  13. 13.
    B. Perthame, Introduction to the collision models in Boltzmann's theory, in Modelling of Collisions, P.-A. Raviart, ed., Series in Appl. Math., Vol. 2 (Gauthier-villars, 1998).Google Scholar
  14. 14.
    C. Cercignani, in Handbook of Fluid Dynamics, North-Holland, S. Frindlander and D. Serre, eds. (North-Holland, Amsterdam), to appear.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Pierre Andries
    • 1
  • Kazuo Aoki
    • 2
  • Benoit Perthame
    • 3
  1. 1.Domaine de VoluceauINRIALe Chesnay CedexFrance
  2. 2.Department of Aeronautics and Astronautics, Graduate School of EngineeringKyoto UniversityKyotoJapan
  3. 3.DMAEcole Normale SupérieureParis Cedex 05France

Personalised recommendations