Advertisement

Educational forms of initiation in mathematical culture

  • Bert van Oers
Article

Abstract

A review of literature shows that during the history of mathematics education at school the answer of what counts as ‘real mathematics’ varies. An argument will be given here that defines as ‘real mathematics’ any activity of participating in a mathematical practice. The acknowledgement of the discursive nature of school practices requires an in-depth analysis of the notion of classroom discourse. For a further analysis of this problem Bakhtin’s notion of speech genre is used. The genre particularly functions as a means for the interlocutors for evaluating utterances as a legitimate part of an ongoing mathematical discourse. The notion of speech genre brings a cultural historical dimension in the discourse that is supposed to be acted out by the teacher who demonstrates the tools, rules, and norms that are passed on by a mathematical community. This has several consequences for the role of the teacher. His or her mathematical attitude acts out tendencies emerging from the history of the mathematical community (like systemacy, non-contradiction etc.) that subsequently can be imitated and appropriated by pupils in a discourse. Mathematical attitude is the link between the cultural historical dimension of mathematical practices and individual mathematical thinking.

activity tool discourse participation genre attitude 

REFERENCES

  1. Bakhtin, M.M.: 1986,Estetika slovesnogo tvorčlestva [Esthetics of verbal creativity]. Moscow: Iskusstvo.Google Scholar
  2. Berljand, I.E. and Kurganov, S.Ju.: 1993, Matemetika v škole dialoga kultur [Mathematics in a ‘Dialog of Cultures’ school].Kemerovo: Alef.Google Scholar
  3. Bibler, V.S.: 1989, ‘Dialog, soznanie, kultur: ideja kultura v rabotach Bachtina [Dialogue, consciousness, culture: the idea of culture in the works of Bakhtin]. Odissej.Čelovek v istorii. Issledovanija po social'noj istorii i istorii kulturi [Odysseus. Man in history. Studies in social history and history of culture] (pp. 21–60) Moscow: Nauka.Google Scholar
  4. Bibler, V.S.: 1992, Škola dialoga kultur: osnovy programmy[The Dialogue of Cultures school: fundamentals of the program].Kemerovo: Alef.Google Scholar
  5. Billig, M.: 1986,Arguing and Thinking. A Rhetorical Approach to Social Psychology, Cambridge University Press, Cambridge.Google Scholar
  6. Bishop, A.J.: 1988,Mathematical Enculturation. A Cultural Perspective on Mathematics Education,Kluwer, Dordrecht.Google Scholar
  7. Bourdieu, P.: 1982, Leç on sur la leç on,Minuit, Paris.Google Scholar
  8. Bower, J.: 2000, ‘Postscript: integrating themes on discourse and design’, in P. Cobb, E. Yackel and K. McClain (eds.), Symbolizing and Communicating in Mathematics Classrooms. Perspectives on Discourse, Tools, and Instructional Design,Erlbaum, Mahwah, pp.385–399.Google Scholar
  9. Bruner, J.S.: 1996,The Culture of Education,Harvard University Press, Cambridge.Google Scholar
  10. Buffee, K.A.: 1993, Collaborative Learning. Higher Education, Interdependence, and the Authority of Knowledge,John Hopkins University Press, Baltimore.Google Scholar
  11. Carpay, J. and van Oers, B.: 1999, ‘Didactic models and the problem of intertextuality and polyphony’, in Y. Engeström, R. Miettinen, and R-L. Punamäki (eds.), Perspectives on Activity Theory, Cambridge University Press, Cambridge, pp.298–313.Google Scholar
  12. Clark, K. and Holquist, M.: 1984,Mikhail Bakhtin,Harvard University Press, Cambridge.Google Scholar
  13. Clot, Y.: 1999, ‘De Vygotski à Leontiev via Bakhtine’, in Y. Clot (ed.), Avec Vygotski,La Dispute, Paris, pp. 165–185.Google Scholar
  14. Cobb, P., Wood, T. and Yackel, E.: 1993, ‘Discourse, mathematical thinking and classroom practice’, in E.A. Forman, N. Minick and C.A. Stone (eds.), Contexts for Learning. Sociocultural Dynamics in Children's Development,Oxford University Press, New York, pp. 91–119.Google Scholar
  15. Cobb, P., Gravemeijer, K., Yackel, E., McClain and Whitenack, J.: 1997, ‘Mathematizing and symbolizing: the emergence of chains of signification in one first-grade classroom’, in D. Kirshner and J.A. Whitson (eds.), Situated Cognition. Social, Semiotic, and Psychological Perspectives,Erlbaum, Mahwah, pp.151–234.Google Scholar
  16. Cobb, P.:1999, ‘Individual and collective mathematical learning: the case of statistical data analysis’,Mathematical Thinking and Learning1, 5–44.Google Scholar
  17. Davydov, V.V.: 1972, Vidy obobščenija v obučenii[Forms of generalization in education],Moscow: Pedagogika. Translated: V.V. Davydov, Types of generalization in instruction.Google Scholar
  18. Reston, VA., National Council of Teachers of Mathematics, 1990.Google Scholar
  19. Davydov, V.V.: 1983, ‘Istoričeskie predposylki učebnoj dejatel'nosti’ [Historical conditions for the learning activity], in V.V. Davydov (ed.), Razvitie psichiki škol'nikov v processe učebnoj dejatel'nosti', APN, Moscow.Google Scholar
  20. Davydov, V.V.: 1988, ‘Problems of developmental teaching’,Soviet Education20(8- 10).Google Scholar
  21. Davydov, V.V.: 1991, ‘L.S. Vygotskij i problemy pedagogičeskoj psichologii[L.S. Vygotsky and the problems of pedagogical pedagogy]’, in: L.S. Vygotsky, Pedagogičeskaja psichologija,Pedagogika, Moscow, pp.5–32, Preface. [Translation: Lev Vygotsky and educational psychology. In L.S. Vygotsky, Educational psychology. Boca Raton: Lucie Press, 1997].Google Scholar
  22. Dienes, Z.P. and Golding, E.W.: 1966, Logiques et jeux logiques. Les premiers pas en mathématiques, I, OCDL, Paris.Google Scholar
  23. Dienes, Z.P. and Golding, E.W.: 1967a, Ensembles, nombres et puissances. Les premiers pas en mathématiques, II, OCDL, Paris.Google Scholar
  24. Dienes, Z.P. and Golding, E.W.: 1967b, Exploration de l'espace et pratique de la mesure. Les premiers pas en mathématiques, III,OCDL, Paris.Google Scholar
  25. van Dijk, I.M.A.W., van Oers, B. and Terwel, J.: 1999, Providing or Designing? Constructing Models as a Strategy for Working with Contextual Problems in Primary Maths Education,Poster and paper for Earli-conferentie (Augustus 1999, Göteborg).Google Scholar
  26. van Dijk, I.M.A.W., van Oers, B. and Terwel, J.:2000, Strategic Learning in Primary Mathematics Education: Effects of an Experimental Program in Modeling,Paper for 9th International Congress on Mathematical Education (ICME-9), Tokyo, Japan.Google Scholar
  27. Forman, E.A.: 1996, ‘Learning mathematics as participation in classroom practice: implications of sociocultural theory for educational reform’, in L.P. Steffe, P. Nesher, P. Cobb, G.A Golding and B. Greer (eds.), Theories of Mathematical Learning,Erlbaum, Mahwah, pp. 115–130.Google Scholar
  28. Forman, E.A. and Larreamendy-Joerns, J.: 1998, ‘Making explicit the implicit: classroom explanations and conversational implicatures’, Mind, Culture, and Activity5(2), 105–113.CrossRefGoogle Scholar
  29. Forman, E.A., Larreamendy-Joerns, J., Stein, M.K. and Brown, C.A.: 1998, ‘“You're going to want to find out which and prove it”: collective argument in a mathematics classroom’, Learning and Instruction8(6),527–548.CrossRefGoogle Scholar
  30. Freudenthal, H.F.: 1973, Mathematics as an Educational Task,Reidel, Dordrecht.Google Scholar
  31. Freudenthal, H.F.: 1978,Weeding and Sowing. Preface to a Science of Mathematical Education,Reidel, Dordrecht.Google Scholar
  32. Freudenthal, H.F.: 1984, Didactische Fenomenologie van Wiskundige Structuren [Didactical phenomenology of mathematical structures], OW&OC, Utrecht.Google Scholar
  33. Freudenthal, H.F.: 1991, Revisiting Mathematics Education. China Lectures,Kluwer Academic Publishers, Dordrecht.Google Scholar
  34. Gravemeijer, K.P.E.: 1994, Developing Realistic Mathematics Education,CDB press, Utrecht.Google Scholar
  35. Gravemeijer, K.: 1997a, ‘Mediating between the concrete and the abstract’, in T. Nunes and P. Bryant (eds.), Learning and Teaching Mathematics. An International Perspective, Psychology Press, Hove, pp. 315–346.Google Scholar
  36. Gravemeijer, K.:1997b, ‘Instructional design for reform in mathematics education’, in M. Beishuizen, K.P.E. Gravemeijer and E.C.D.M. van Lieshout (eds.), The Role of Contexts and Models in the Development of Mathematical Strategies and Procedures,CDB press, Utrecht, pp. 13–54.Google Scholar
  37. Greeno, J. G.: 1997, ‘Response: On claims that answer the wrong questions’,Educational Researcher 27(1),5–17.CrossRefGoogle Scholar
  38. Harré, R. and Gillett, G.: 1994, The Discursive Mind,Sage, London.Google Scholar
  39. Lave, J.: 1988, Cognition in Practice. Mind, Mathematics, and Culture in Everyday Life, Cambridge University Press, Cambridge.Google Scholar
  40. Lave, J. and Wenger, E.: 1991, Situated Learning. Legitimate Peripheral Participation, Cambridge University Press, Cambridge.Google Scholar
  41. Leont'ev, A.N.: 1975, Dejatel'nost', soznanie, ličnost'[Activity, consciousness, personality], Politizdat, Moscow.Google Scholar
  42. Morris, P. (ed.).: 1994, The Bakhtin Reader. Selected Writings of Bakhtin, Medvedev, Voloshinov, Arnold, London.Google Scholar
  43. Nunes, T., Schliemann, A. and Carraher, D.: 1993, Street Mathematics and School Mathematics,Cambridge University Press, New York.Google Scholar
  44. O'Connor, M.C. and Michaels, S.: 1996, ‘Shifting participant frameworks: orchestrating thinking practices in group discussion’, in D. Hicks (ed.), Discourse, Learning, and Schooling,Cambridge University Press, Cambridge, pp.63–104.Google Scholar
  45. van Oers, B.: 1987, Activiteit en Begrip[Activity and concept],Free University Press, Amsterdam.Google Scholar
  46. van Oers, B.: 1996, ‘Are you sure? The promotion of mathematical thinking in the play activities of young children’, European Early Childhood Education Research Journal, 4(1),71–89.Google Scholar
  47. van Oers, B.: 1998, ‘From context to contextualization’, Learning and Instruction8(6), 473–488.CrossRefGoogle Scholar
  48. van Oers, B.: 2000a, ‘The appropriation of mathematical symbols: a psychosemiotic approach to mathematics learning’, in P. Cobb, E. Yackel and K. McClain (eds.), SymINITIATION bolizing and Communicating in Mathematics Classrooms. Perspectives on Discourse, Tools, and Instructional Design,Erlbaum, Mahwah, pp. 133–176.Google Scholar
  49. van Oers, B.: 2000b, ‘Teachers’ epistemology and the monitoring of mathematical thinking in early years classrooms’, Paper for the 10th conference of the European Early Childhood Education Research Association (London, August, 2000).Google Scholar
  50. van Oers, B.: 2001, ‘Contextualisation for abstraction’, Cognitive Sciences Quarterly, Vol. 1,3/4, 279–306.Google Scholar
  51. Piaget, J.: 1966, ‘L'initiation aux mathématiques, les mathématiques modernes et la psychologie de l'enfant’, L'enseignement mathématique2(12),289–292.Google Scholar
  52. Piaget, J.: 1969a, ‘Education et instruction depuis 1935’, in J. Piaget (ed.), Psychologie et pédagogie, Denoë l, Paris, pp.1–195. Originally published in 1965.Google Scholar
  53. Piaget, J.: 1969b, ‘Les méthodes nouvelles. Leurs bases psychologiques’, in J. Piaget (ed.), Psychologie et pédagogie, Denoë l, Paris, pp. 196–264. Originally published in 1935.Google Scholar
  54. Picard, N.: 1970, Mathematique et jeux d'enfants,Casterman, Tournai.Google Scholar
  55. Rogoff, B.: 1990, Apprenticeship in Thinking, Oxford University Press, New York.Google Scholar
  56. Rommetveit, R.: 1985, ‘Language acquisition as increasing linguistic structuring of experience and symbolic behavior control’, in J.V. Wertsch (ed.), Culture Communication and Cognition. Vygotskian Perspectives,Cambridge University Press, Cambridge, pp. 183–204.Google Scholar
  57. Rotman, B.: 1988, ‘Towards a semiotics of mathematics’, Semiotica72(1- 2),1–35.CrossRefGoogle Scholar
  58. Saxe, G.: 1991,Culture and Cognitive Development: Studies in Mathematical Understanding, Erlbaum, Hillsdale, N.J.Google Scholar
  59. Saxe, G. and Guberman, S.R.: 1998, ‘Studying mathematics learning in collective activity’, Learning and Instruction 8(6),489–502.CrossRefGoogle Scholar
  60. Sfard, A.:2000, ‘On reform movement and the limits of mathematical discourse’, Mathematical Thinking and Learning 2(3),157–189.Google Scholar
  61. Steinbring, H.: 1998, ‘Mathematical understanding in classroom interaction: the interrelation of social and epistemological constraints’, in:F. Seeger, J. Voigt and U. Waschescio (eds.), The Culture of the Mathematics Classroom, Cambridge University Press, Cambridge, pp.344–372.Google Scholar
  62. Valsiner, J. and van de Veer, R.: 2000, The Social Mind. Construction of the Idea, Cambridge University Press, Cambridge.Google Scholar
  63. Voloshinov, V.N.: 1929/1984, ‘Marxism and the philosophy of language’, in P. Morris (ed.), The Bakhtin Reader. Selected writings of Bakhtin, Medvedev, Voloshinov., Arnold, London.Google Scholar
  64. Vygotsky, L.S.: 1987, Thinking and Speech,Plenum, New York.Google Scholar
  65. Vygotsky, L.S.: 1926/1991, Pedagogičeskaja psichologija,Pedagogika, Moscow. [Translation:L.S. Vygotsky, Educational psychology. Boca Raton: Lucie Press, 1997].Google Scholar
  66. Wells, G.: 1999, Dialogic Inquiry. Toward a Sociocultural Practice and Theory of Education,Cambridge University Press, Cambridge.Google Scholar
  67. Wertsch, J.V. (ed.): 1985, Culture, Communication and Cognition,Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Bert van Oers
    • 1
  1. 1.Department of Education and CurriculumFree University AmsterdamThe Netherlands

Personalised recommendations