Journal of Superconductivity

, Volume 15, Issue 1, pp 49–65 | Cite as

Creation of Nonlocal Spin-Entangled Electrons via Andreev Tunneling, Coulomb Blockade, and Resonant Transport

  • Patrik Recher
  • Daniel Loss

Abstract

We discuss several scenarios for the creation of nonlocal spin-entangled electrons which provide a source of electronic Einstein–Podolsky–Rosen (EPR) pairs. Such EPR pairs can be used to test nonlocality of electrons in solid state systems, and they form the basic resources for quantum information processing. The central idea is to exploit the spin correlations naturally present in superconductors in form of Cooper pairs possessing spin-singlet wavefunctions. We show that nonlocal spin-entanglement in form of an effective Heisenberg spin interaction is induced between electron spins residing on two quantum dots with no direct coupling between them, but each of them being tunnel-coupled to the same superconductor. We then discuss a nonequilibrium setup with an applied bias where mobile and nonlocal spin-entanglement can be created by coherent injection of two electrons, in a pair (Andreev) tunneling process, into two spatially separated quantum dots and subsequently into two Fermi liquid leads. The current for injecting two spin-entangled electrons into different leads shows a resonance and allows the injection of electrons at the same orbital energy, which is a crucial requirement for the detection of spin-entanglement via the current noise. On the other hand, tunneling via the same dot into the same lead is suppressed by the Coulomb blockade effect of the quantum dots. We discuss Aharonov–Bohm oscillations in the current and show that they contain h/e and h/2e periods, which provides an experimental means to test the nonlocality of the entangled pair. Finally, we discuss a structure consisting of a superconductor weakly coupled to two separate one-dimensional leads with Luttinger liquid properties. We show that strong correlations again suppress the coherent subsequent tunneling of two electrons into the same lead, thus generating again nonlocal spin-entangled electrons in the Luttinger liquid leads.

entanglement transport tunneling quantum dots superconductor Luttinger liquids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. A. Prinz, Phys.Today 45(4), 58 (1995).Google Scholar
  2. 2.
    G. A. Prinz, Science 282, 1660 (1998).Google Scholar
  3. 3.
    J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997).Google Scholar
  4. 4.
    J. M. Kikkaswa and D. D. Awschalom, Phys.Rev.Lett. 80, 4313 (1998).Google Scholar
  5. 5.
    D. D. Awschalom and J. M. Kikkawa, Phys.Today 52(6), 33 (1999).Google Scholar
  6. 6.
    R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molen-Kamp, Nature 402, 787 (1999).Google Scholar
  7. 7.
    Y. Ohno, D. K. Young, B. Beschoten, F. Matsukara, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).Google Scholar
  8. 8.
    D. Loss and D. P. DiVincenzo, Phys.Rev.A 57, 120 (1998); cond-mat/9701055.Google Scholar
  9. 9.
    A. Steane, Rep.Prog.Phys. 61, 117 (1998).Google Scholar
  10. 10.
    D. P. DiVincenzo and D. Loss, J.Magn.Magn.Mater. 200, 202 (1999); cond-mat/9901137.Google Scholar
  11. 11.
    C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).Google Scholar
  12. 12.
    A. Einstein, B. Podolsky, and N. Rosen, Phys.Rev. 47, 777 (1935).Google Scholar
  13. 13.
    J. S. Bell, Rev.Mod.Phys. 38, 447 (1966).Google Scholar
  14. 14.
    G. Burkard, D. Loss, and E. V. Sukhorukov, Phys.Rev.B 61, R16 303 (2000).Google Scholar
  15. 15.
    M.-S. Choi, C. Bruder, and D. Loss, Phys.Rev.B 62, 13569 (2000); cond-mat/0001011.Google Scholar
  16. 16.
    G. Burkard, H.-A. Engel, D. Loss, Fortschr.Phys. 48, 965 (2000); cond-mat/0004182.Google Scholar
  17. 17.
    P. Recher, E. V. Sukhorukov, and D. Loss, Phys.Rev.B 63, 165314 (2001); cond-mat/0009452.Google Scholar
  18. 18.
    G. B. Lesovik, T. Martin, and G. Blatter, cond-mat/0009193.Google Scholar
  19. 19.
    G. Falci, D. Feinberg, and F.W. J. Hekking, cond-mat/0011339.Google Scholar
  20. 20.
    R. Mélin, cond-mat/0105073.Google Scholar
  21. 21.
    M.-S. Choi, C. Bruder, and D. Loss, in Lecture Notes in Physics, Vol.579, R. Haug and H. Schoeller, eds. (Springer Berlin, 2001), pp. 46-66.Google Scholar
  22. 22.
    J. R. Schrieffer, Theory of Superconductivity (Benjamin/ Cummings, New York, 1964).Google Scholar
  23. 23.
    F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys.Rev.Lett. 70, 4138 (1993).Google Scholar
  24. 24.
    L. P. Kouwenhoven, G. Schön, and L. L. Sohn, in Mesoscopic ElectronTransport (Kluwer Academic Publishers, Amsterdam, 1997). NATO ASI Series E: Applied Sciences, Vol. 345.Google Scholar
  25. 25.
    H. Takayanagi, T. Akazaki, and J. Nitta, Phys.Rev.Lett. 75, 3533 (1995).Google Scholar
  26. 26.
    S. De Franceschi, F. Giazotto, F. Beltram, L. Sorba, M. Lazzarino, and A. Franciosi, Appl.Phys.Lett. 73, 3890 (1998).Google Scholar
  27. 27.
    L. C. Venema, J. V. G. Wildöer, J. W. Janssen, S. J. Tans, H. L. J. Temminck Tuinstra, L. P. Kouwenhoven, and C. Dekker, Science 283, 52 (1999).Google Scholar
  28. 28.
    E. Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, NewYork, 1998), Chap. 20.Google Scholar
  29. 29.
    P. Recher, E. V. Sukhorukov, and D. Loss, Phys.Rev.Lett. 85, 1962 (2000).Google Scholar
  30. 30.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, London, 1995), p. 260.Google Scholar
  31. 31.
    A. F. Volkov, P. H. C. Magne, B. J. van Wees, and T. M. Klapwijk, Physica C 242, 261 (1995).Google Scholar
  32. 32.
    M. Kociak, A. Yu. Kasumov, S. Guron, B. Reulet, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, L. Vaccarini, and H. Bouchiat, Phys.Rev.Lett. 86, 2416 (2001).Google Scholar
  33. 33.
    D. Loss and E. V. Sukhorukov, Phys.Rev.Lett. 84, 1035 (2000); cond-mat/9906071.Google Scholar
  34. 34.
    H. J. Schulz, Phys.Rev.Lett. 64, 2831 (1990).Google Scholar
  35. 35.
    F. D. M. Haldane, J.Phys.C. 14, 2585 (1981).Google Scholar
  36. 36.
    R. Heidenreich, R. Seiler, and A. Uhlenbrock, J.Stat.Phys. 22, 27 (1980).Google Scholar
  37. 37.
    R. Egger and A. Gogolin, Phys.Rev.Lett. 79, 5082 (1997); R. Egger, Phys.Rev.Lett. 83, 5547 (1999).Google Scholar
  38. 38.
    C. Kane, L. Balents, and M. P. A. Fisher, Phys.Rev.Lett. 79, 5086 (1997).Google Scholar
  39. 39.
    L. Balents and R. Egger, Phys.Rev.B 64, 035310 (2001).Google Scholar
  40. 40.
    J. Nygård, Ph.D. Thesis, Faculty of Science, University of Copenhagen, 2000.Google Scholar
  41. 41.
    A. Bachthold, M. de Jonge, K. Grove-Rasmussen, P. L. McEuen, M. Buitelaar, and C. Schönenberger, Phys.Rev.Lett. 87, 166801 (2001).Google Scholar
  42. 42.
    D. Rugar, B. C. Stipe, H. J. Mamin, C. S. Yannoni, T. D. Stowe, K. Y. Yasumura, and T. W. Kenny, Appl.Phys.A 72[Suppl.], S3-S10 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Patrik Recher
    • 1
  • Daniel Loss
    • 1
  1. 1.Department of Physics and AstronomyUniversity of BaselBaselSwitzerland

Personalised recommendations