, Volume 4, Issue 3, pp 193–206 | Cite as

Endostatin inhibits angiogenesis by stabilization of newly formed endothelial tubes

  • Süleyman Ergün
  • Nerbil Kilic
  • Jan-Henner Wurmbach
  • Alireza Ebrahimnejad
  • Malkanthi Fernando
  • Sema Sevinc
  • Ergin Kilic
  • Fariba Chalajour
  • Walter Fiedler
  • Heidrun Lauke
  • Katrin Lamszus
  • Peter Hammerer
  • Joachim Weil
  • Hermann Herbst
  • Judah Folkman


Endostatin decreased vascular endothelial growth factor (VEGF)-induced formation of endothelial tubes and microvessels sprouting from aortic rings and blocked their network. After cessation of treatment, the survival time of endostatin plus VEGF-treated tubes was approximately doubled in comparison to VEGF alone. Endostatin antibody blocked VEGF-induced endothelial tube formation and disrupted existing tubes. Endostatin immunostaining was localized between endothelium and basement membrane and in inter-endothelial junctions of new, but not of quiescent, blood vessels. In tumors grown in SCID mice, endostatin immunostaining was stronger accompanying blood vessel maturation and was significantly prominent in vessels of tumor marginal zone where angiogenesis is highly active. These data indicate a new antiangiogenic action of endostatin stabilizing and maturating endothelial tubes of newly formed blood vessels. Thus, strategies accelerating vascular stabilization and maturation could be promising in tumor therapy.

aortic ring assay angiogenesis inhibition chemotaxis collagen XVIII endostatin endothelial tube assay HDMEC human tumor tissues vascular stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58–61.PubMedCrossRefGoogle Scholar
  2. 2.
    Risau W. Vasculogenesis, angiogenesis and endothelial cell differentiation during embryonic development. In Feinberg RN, Shere GK, Auerbach R (eds): The Development of the Vascular System. Basel: Karger 1991; 58–68.Google Scholar
  3. 3.
    Folkman J, D'Amore PA. Blood vessel formation: What is its molecular basis? Cell 1996; 87: 1153–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997; 277: 48–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Sato TN, Tozawa Y, Deutsch U et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Suri C, Jones PF, Patan S et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Maisonpierre PC, Suri C, Jones PF et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Klagsbrun M, D'Amore PA. Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev 1996; 7: 259–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocrine Rev 1997; 18: 4–25.CrossRefGoogle Scholar
  10. 10.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Homandberg GA, Williams JE, Grant D et al. Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am J Pathol 1995; 120: 327–32.Google Scholar
  12. 12.
    Good DJ, Polverini PJ, Rastinejad F et al. A tumor suppressordependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990; 87: 6624–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Gupta SK, Hassel T, Singh JP. A potent inhibitor of endothelial cell proliferation is generated by proteolytic cleavage of the chemokine platelet factor 4. Proc Natl Acad Sci USA 1995; 92: 7799–803.PubMedCrossRefGoogle Scholar
  14. 14.
    O'Reilly MS, Holmgren L, Shing Y et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–28.PubMedCrossRefGoogle Scholar
  15. 15.
    O'Reilly MS, Boehm T, Shing Y et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–85.PubMedCrossRefGoogle Scholar
  16. 16.
    O'Reilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Boehm T, Folkman J, Browder T, O'Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390: 404–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Oh SP, Kamagata Y, Muragaki Y et al. Isolation and sequencing of cDNAs for proteins with multiple domains of Gly-Xaa-Yaa repeats identify a distinct family of collagenous proteins. Proc Natl Acad Sci USA 1994; 91: 4229–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Rehn M, Hintikka E, Pihlajaniemi T. Primary structure of the alpha 1 chain of mouse type XVIII collagen, partial structure of the corresponding gene, and comparison of the alpha 1(XVIII) chain with its homologue, the alpha 1(XV) collagen chain. J Biol Chem 1994; 269: 13929–35.PubMedGoogle Scholar
  20. 20.
    Rehn M, Pihlajaniemi T. Identification of three N-terminal ends of type XVIII collagen chains and tissue-specific differences in the expression of the corresponding transcripts. The longest form contains a novel motif homologous to rat and Drosophila frizzled proteins. J Biol Chem 1995; 270: 4705–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Sasaki T, Hohenester E, Göhring W, Timpl R. Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epiptope of an activated form of BM-40/SPARC/osteonectin. EMBO J 1998; 17: 1625–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Muragaki Y, Timmons S, Griffith CM et al. Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones. Proc Natl Acad Sci USA 1995; 92: 8763–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Miosge N, Sasaki T, Timpl R. Angiogenesis inhibitor endostatin is a distinct component of elastic fibers in vessel walls. FASEB J 1999; 13: 1743–50.PubMedGoogle Scholar
  24. 24.
    Sasaki T, Fukai N, Mann K et al. Structure function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J 1998; 17: 4249–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Dixelius J, Larsson H, Sasaki T et al. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood 2000; 95: 3403–11.PubMedGoogle Scholar
  26. 26.
    Kuo CJ, LaMontagne KR, Jr, Garcia-Cardena G et al. Oligomerization-dependent regulation of motility and morphogenesis by the collagen xviii nc1/endostatin domain. J Cell Biol 2001; 152: 1233–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Ackley BD, Crew JR, Elamaa H et al. The NCI/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance. J Cell Biol 2001; 152: 1219–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Schuppan D, Cramer T, Bauer M et al. Hepatocytes as a source of collagen type XVIII endostatin. Lancet 1998; 352: 879–80 (Letter).PubMedCrossRefGoogle Scholar
  29. 29.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265–75.PubMedGoogle Scholar
  31. 31.
    Ergun S, Kilic N, Fiedler W, Mukhopadhyay AK. Vascular endothelial growth factor and its receptors in normal human testicular tissue. Mol Cell Endocrinol 1997; 131: 9–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Ergun S, Kilic N, Ziegeler G et al. CEA-related cell adhesion molecule 1: A potent angiogenic factor and a major effector of vascular endothelial growth factor. Mol Cell 2000; 5: 311–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Schmidt NO, Westphal M, Hagel C et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 1999; 84: 10–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Pepper NS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 1992; 189: 824–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Eschenhagen T, Fink C, Remmers U et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system. FASEB J 1997; 11: 683–94.PubMedGoogle Scholar
  36. 36.
    Musso O, Rehn M, Saarela J et al. Collagen XVIII is localized in sinusoids and basement membrane zones and expressed by hepatocytes and activated stellate cells in fibrotic human liver. Hepatology 1998; 28: 98–107.PubMedCrossRefGoogle Scholar
  37. 37.
    Saarela J, Rehn M, Oikarinen A et al. The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol 1998; 153: 611–26.PubMedGoogle Scholar
  38. 38.
    Rehn M, Veikkola T, Kukk-Valdre E et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 2001; 98: 1024–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Medicine 2000; 6: 389–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Dickson MC, Martin JS, Cousins FM et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 1995; 121: 1845–54.PubMedGoogle Scholar
  41. 41.
    Lindahl P, Hellstrom M, Kalen M, Betsholtz C. Endothelialperivascular cell signaling in vascular development: Lessons from knockout mice. Curr Opin Lipidol 1998; 9: 407–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Thurston G, Suri C, Smith K et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999; 286: 2511–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Thurston G, Rudge JS, Ioffe E et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6: 460–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Kilic N, Lauke H, Fiedler W et al. Angiogenic switch and vascular stability in human Leydig cell tumours. Angiogenesis 1999; 3: 231-40.PubMedCrossRefGoogle Scholar
  45. 45.
    Yamaguchi N, Anand-Apte B, Lee M et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 1999; 18: 4414–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Asahara T, Chen D, Takahashi T et al. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 1998; 83: 233–40.PubMedGoogle Scholar
  47. 47.
    Holash J, Maisonpierre PC, Compton D et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994–8.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Süleyman Ergün
    • 1
  • Nerbil Kilic
    • 1
  • Jan-Henner Wurmbach
    • 1
    • 2
  • Alireza Ebrahimnejad
    • 3
  • Malkanthi Fernando
    • 1
  • Sema Sevinc
    • 1
  • Ergin Kilic
    • 1
  • Fariba Chalajour
    • 1
  • Walter Fiedler
    • 4
  • Heidrun Lauke
    • 1
  • Katrin Lamszus
    • 5
  • Peter Hammerer
    • 2
  • Joachim Weil
    • 6
  • Hermann Herbst
    • 7
  • Judah Folkman
    • 8
  1. 1.Department of AnatomyUniversity Hospital EppendorfHamburgGermany
  2. 2.Department of UrologyUniversity Hospital EppendorfHamburgGermany
  3. 3.Department of Clinical ChemistryUniversity Hospital EppendorfHamburgGermany
  4. 4.Department of Hematology/OncologyUniversity Hospital EppendorfHamburgGermany
  5. 5.Department of NeuropathologyUniversity Hospital EppendorfHamburgGermany
  6. 6.Department of PharmacologyUniversity Hospital EppendorfHamburgGermany
  7. 7.Department of PathologyUniversity Hospital EppendorfHamburgGermany
  8. 8.Department of Surgical Research, Children's HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations