Water, Air, and Soil Pollution

, Volume 130, Issue 1–4, pp 1271–1276 | Cite as

Predicting Reversibility of Acidification: The European Sulfur Story

  • Christine Alewell
Article

Abstract

Because of the deleterious effects of acid rain and the need to predict reversibility of acidification, various scientific tools such as modeling, stable isotopes and flux/budget calculations have been used in biogeochemical sulfur (S) research. The aim of this study was to evaluate consistencies and discrepancies between these different tools. While modeling has been seemingly successful in predicting S dynamics in soil solution and stream water by considering inorganic sulfate sorption and desorption only, stable S isotopes indicate that biological S turnover plays a crucial role for the sulfate released to soil solution and stream water. A comparison of budget calculations with soil S pools reveals that inorganic sulfate sorption and desorption are the controlling processes as long as deposition is high (> 15 kg S ha−1yr−1) and soils have a high sulfate sorption capacity. This explains the successful model predictions of the last two decades. However, for soils with low sulfate sorption capacity and under low sulfate deposition, organic S seems to be a significant source for stream water sulfate and has to be considered in future modeling.

forest ecosystems modeling reversibility of acidification stable S isotopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alewell, C. and Gehre, M.: 1999, Biogeochemistry 47, 319.Google Scholar
  2. Alewell, C. and Novak, M.: 2000, Environmental Pollution (in press)Google Scholar
  3. Alewell, C., Bredemeier, M., Matzner, E. and Blanck, K.: 1997, J. Environ. Qual. 26, 658.Google Scholar
  4. Alewell, C., Mitchell, M., Likens, G.E. and Krouse, R.H.: 1999, Biogeochemistry 44, 281.Google Scholar
  5. Armbruster, M.: 1998, Freiburger Bodenkundliche Berichte 38, 301pp.Google Scholar
  6. Driscoll, C.T., Likens, G.E. & Church, M.R.: 1998, Water Air and Soil Pollution 105, 319.Google Scholar
  7. EMEP: 2000, http://www.emep.int/emis_tables.Google Scholar
  8. Feger, K.H.: 1993, Freiburger Bodenkundliche Abhandlungen 31, 237ppGoogle Scholar
  9. Fuller R.D., Mitchell M.J., Krouse H.R., Wyskowski B.J. and Driscoll C.T.: 1986, Water Air Soil Poll. 28, 163.Google Scholar
  10. Krouse, H.R. and Grinenko, V.A.: 1991, Stable Isotopes. Natural and Anthropogenic Sulphur in the Environment, Scope 43, John Wiley & Sons Ltd., New York, NY.Google Scholar
  11. Manderscheid, B., Schweisser, T., Lischeid, G., Alewell, C. and Matzner, E.: 2000, Soil Sci. Soc. Am. J. 64, 1078.Google Scholar
  12. Matzner, E., Alewell, C., Bittersohl, J., Lischeid, G., Kammerer, G., Manderscheid, B., Matschonat, G., Moritz, K., Tenhunen, J.D., and Totsche, K.U.: 2000, ‘Biogeochemistry of a spruce forest catchment of the Fichtelgebirge in response to changing atmospheric deposition.’ in: J.D. Tenhunen, R. Lenz, and R. Hantschel, (eds.): Ecosystem Approaches to Landscape Management in Central Europe, Ecological Studies, Springer Verlag, Heidelberg (in press)Google Scholar
  13. Mayer, B., Feger, K.H., Giesemann, A. and Jäger, H.-J.: 1995a, Biogeochemistry 30, 31.Google Scholar
  14. Mayer, B., Fritz, P., Prietzel, J. and Krouse, H. R.: 1995b, Applied Geochemistry 10, 161.Google Scholar
  15. Mitchell, M.J., Krouse, R.H., Mayer, B., Stam, A.C. and Zhang, Y.M.: 1999. ‘Use of stable isotopes in evalauting biogeochemistry if forest ecosystems’ in: C. Kendall, and J. McDonnell (eds.), Isotope tracers in Catchment Hydrology. Elsevier, The Netherlands, 489.Google Scholar
  16. Mitchell, M.J., Mayer, B., Bailey, S.W., Hornbeck, J., Alewell, C., Driscoll, C.T., Likens, G.E.: 2000. Discrepancies in sulfur mass balance at the Hubbard Brook Experimental Forest: Use of stable isotopes for evaluating sulfur sources and sinks. Water Air Soil Pollut. (this volume).Google Scholar
  17. Moldan, P.: 1999, Silvestria 117; Swedish University of Agricultural Sciences, Umeå.Google Scholar
  18. Novák, M., Bottrell, S.H.; Fottová, D., Buzek, F., Groscheová, H. and Zák, K.: 1996, Environmental. Science and Technology. 30, 3473.Google Scholar
  19. Novak, M., Kirchner, J.W., Groscheova, H., Havel, M., Verny, J., Krejci, R. and Buzek, F.: 2000. Geochimica et Cosmochimica Acta 64, 367.Google Scholar
  20. Prietzel, J.: 1998, Habilitationsschrift der Ludwig-Maximilians-Universität München, 399pp.Google Scholar
  21. Skjelkvåle, B.L., Tørseth, K., and Aas, W.: 2000. Decrease in acid deposition — recovery in Norwegian waters. Water Air Soil Pollut. (this volume)Google Scholar
  22. Torssander, P. and Mörth, C.-M.: 1997, ‘Sulfur Dynamics in the Roof Experiment at lake Gårdsjön deduced from sulfur and oxygen isotope ratios in sulfate. in: H. Hultberg and R. Skeffington (eds.), Experimental Reversal of Acid Rain Effects: The Gårdsjön Roof Project. John Wiley & Sons. Chichester, pp. 185–206.Google Scholar
  23. van Dijk, H.F.G., Boxman, A.W. and Roelofs, J.G.M.: 1992, Forest Ecol. Management 51, 207.Google Scholar
  24. Wright, R.F., Lotse, E. and Semb, A.: 1988, Nature 334, 670.Google Scholar
  25. Zhang, Y.: 1994, Ph.D. Dissertation. SUNY, ESF, Syracuse, NY, USA, 273pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Christine Alewell
    • 1
  1. 1.Dept. of Soil Ecology, BITÖKUniversity of BayreuthBayreuthGermany

Personalised recommendations