Hydrobiologia

, Volume 464, Issue 1–3, pp 89–98

The influence of Procambarus clarkii (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland

  • David G. Angeler
  • Salvador Sánchez-Carrillo
  • Gregorio García
  • Miguel Alvarez-Cobelas
Article

Abstract

This study describes the effects of the American red swamp crayfish, Procambarus clarkii Girard, on water quality and sediment characteristics in the Spanish floodplain wetland, Las Tablas de Daimiel National Park. Our short term enclosure study during a summer drawdown revealed that crayfish acted as a nutrient pump that transformed and translocated sediment bound nutrients to the water column. Water quality impoverishment was mainly due to the increase of dissolved inorganic nutrients (soluble reactive phosphorus and ammonia), and a significant increase of total suspended solids occurred likely as a result of crayfish associated bioturbation. At the same time, crayfish reduced the content of organic matter in the sediment and we observed a slight increase of total sediment phosphorus and nitrogen content as a result of crayfish benthic activity. P. clarkii effects, in terms of internal nutrient loading (229.91 mg TP m−2 d−1), were shown to be important on a local scale, indicating the significance of internal nutrient supply to water column primary producers particularly under low external supply (summer). Extrapolations to the whole ecosystem, however, revealed a negligible crayfish contribution (0.06%) to total internal nutrient loading (0.035 mg TP m−2 d−1). Hence, crayfish spatial heterogeneity patterns are important in global and local matter fluxes and nutrient cycles in wetlands.

Procambarus clarkii freshwater crayfish water quality sediment internal loading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References>

  1. Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.Google Scholar
  2. Andersson, G., W. Graneli & J. Stenson, 1988. The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia 170: 267–284.Google Scholar
  3. Angeler, D. G., 2000. Wetlands in Mediterranean Europe: Threats and possible Solutions. European Community, Training and Mobility of Researchers Report No. ERBFMBICT983001, Brussels, Belgium.Google Scholar
  4. Angeler, D. G., M. Alvarez–Cobelas, C. Rojo & S. Sánchez– Carrillo, 2000a. The significance of water inputs to plankton biomass and trophic relationships in a semi-arid freshwater wetland (central Spain). J. Plankton Res. 22: 2075–2093.Google Scholar
  5. Angeler, D. G., M. Alvarez-Cobelas, M. A. Rodrigo & S. Sánchez– Carrillo, 2000b. Wetlands in semi-arid Europe: how to cope with eutrophication. Abstract of the 21st Conference of the Society of Wetland Scientists – Wetland Millennium Event, Quebec City, Canada: 178 pp.Google Scholar
  6. Angeler, D. G., M. Alvarez-Cobelas, S. Sánchez-Carrillo & M.A. Rodrigo, in press. Assessment of exotic fish impacts on water quality and zooplankton in a semi-arid floodplain wetland. Aquat. Sci.Google Scholar
  7. APHA, 1989. Standard Methods for the Examination of Water and Wastewater. 17th edn. Washington, D.C.Google Scholar
  8. Avault, J. W. 1992. A review of world crustacean aquaculture II. Aquacult. Mag. 18: 83–92.Google Scholar
  9. Bachman, R. W. & D. E. Canfield, 1996. Use of an alternative method for monitoring total nitrogen concentrations in Florida lakes. Hydrobiologia 323: 1–8.Google Scholar
  10. Bernardo, J. M. & M. Ilhéu, 1994. Red swamp crayfish (Procambarus clarkii): Contribution to material cycling. Verh. int. Ver. Limnol. 25: 2447–2449.Google Scholar
  11. Brabrand, A., B. A. Faafeng & J. P. M. Nilssen, 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can. J. Fish. aquat. Sci. 47: 364–372.Google Scholar
  12. Breukelaar, A. W., E. H. R. R. Lammens, J. G. P. Klein–Breteler & I. Tátrai, 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwat. Biol. 32: 113–121.Google Scholar
  13. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.Google Scholar
  14. Chambers, P. A., J. M. Hanson, J. M. Burke & E. E. Prepas, 1990. The impact of Orconectes virilis on aquatic macrophytes. Freshwat. Biol. 24: 81–91.Google Scholar
  15. Dahl, O., 1991. Release of phosphorus and nitrogen from pelagic populations of roach (Rutilus rutilus) and bleak (Alburnus alburnus): Unpublished Thesis, University of Oslo.Google Scholar
  16. Den Oude, P. J. & R. D. Gulati, 1988. Phosphorus and nitrogen excretion rates of zooplankton from eutrophic Loosdrecht lakes, with notes on other P sources for phytoplankton requirements. Hydrobiologia 169: 379–390.Google Scholar
  17. Ejsmont–Karabin, J., 1984. Phosphorus and nitrogen excretion by lake zooplankton (rotifers and crustaceans) in relation to individual body weight of the animals, ambient temperature and presence and absence of food. Ekol. Polska, Ser. A 32: 3–42.Google Scholar
  18. Feminella, J. W. & V. H. Resh, 1989. Submersed macrophytes and grazing crayfish: an experimental study of herbivory in a Californian freshwater marsh. Holarctic Ecol. 12: 1–8.Google Scholar
  19. Flint, R. W. & C. R. Goldman, 1975. The effects of a benthic grazer on the primary productivity of the lake littoral zone of lake Tahoe. Limnol. Oceanogr. 20: 935–944.Google Scholar
  20. Fukuhara, H. & K. Yasuda, 1987. Enhancement of inorganic nitrogen and phosphate release from lake sediment by tubificid worms and chironomid larvae. Oikos 48: 312–320.Google Scholar
  21. Fukuhara, H. & K. Yasuda, 1989. Ammonium excretion by some freshwater zoobenthos from a eutrophic lake. Hydrobiologia 173: 1–8.Google Scholar
  22. Gardner, W. S., T. F. Nepla, M. A. Quigley & J. M. Malczyk, 1981. Release of phosphorus by certain benthic invertebrates. Can. J. Fish. aquat. Sci. 38: 978–981.Google Scholar
  23. Gardner, W. S., T. F. Nepla, D. S. Slavenus & G. A. Lairds, 1983. Patterns and rates of nitrogen release by benthic Chironomidae and Oligochaeta. Can. J. Fish. aquat. Sci. 40: 259–266.Google Scholar
  24. Graneli, W., 1979. The influence of Chironomus plumosus larvae on the oxygen uptake of sediment. Arch. Hydrobiol. 87: 385–403.Google Scholar
  25. Gutiérrez–Yurrita, P. J., G. Sancho, M. A. Bravo, A. Baltanás & C. Montes, 1998. Natural diet of the red swamp crayfish Procambarus clarkii in the Doñana National Park freshwater marsh (SW Spain). J. Crust. Biol. 8: 120–127.Google Scholar
  26. Gutiérrez–Yurrita, P. J. & C. Montes, 1999. Bioenergetics and phenology of reproduction of the introduced red swamp cray-fish, Procambarus clarkii, in Doñana National Park, Spain, and implications for species management. Freshwat. Biol. 42: 561–574.Google Scholar
  27. Hansson, L.-A., L. Johansson & L. Persson, 1987. Effects of fish grazing on nutrient release and succession of primary producers. Limnol. Oceanogr. 32: 723–729.Google Scholar
  28. Hessen, D. O., G. Kristiansen & J. Skurdal, 1993. Nutrient release from crayfish and its potential impact on primary production in lakes. Freshwat. Crayfish 9: 311–317.Google Scholar
  29. Hobbs, H. H., J. P. Jass & J. V. Huner, 1989. A review of global crayfish introductions with particular emphasis on two north American species (Decapoda, Cambaridae). Crustaceana 56: 299–316.Google Scholar
  30. Horppila, J. & T. Kairesalo, 1992. Impact of bleak (Alburnus alburnus) and roach (Rutilus rutilus) on water quality, sedimentation and internal nutrient loading. Hydrobiologia 243/244: 323–331.Google Scholar
  31. Kitchell, J. F., J. F. Koonze & P. S. Tennis, 1975. Phosphorus flux through fishes. Verh. int. Ver. Limnol. 19: 2478–2484.Google Scholar
  32. Kristiansen, G. & D. O. Hessen, 1992. Nitrogen and phosphorus excretion from the noble crayfish, Astacus astacus L., in relation to food type and temperature. Aquaculture b102: 245–264.Google Scholar
  33. Lamarra, V. A., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh. int. Verein. Limol. 19: 2461–2468.Google Scholar
  34. Lehman, J. T., 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.Google Scholar
  35. Lodge, D. M. & A. M. Hill, 1994. Factors governing species composition, population size and productivity of cool-water crayfishes. Nord. J. Freshwat. Res. 69: 111–136.Google Scholar
  36. Lodge, D. M. & J. G. Lorman, 1987. Reductions in submersed macrophyte biomass and species richness by the crayfish Orconectes rusticus. Can. J. Fish. aquat. Sci 44: 5091–597.Google Scholar
  37. Lodge, D. M., M. W. Kershner, J. E. Aloi & A. P. Covich, 1994. Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 75: 1265–1281.Google Scholar
  38. Lougheed, V. L., B. Crosbie & P. Chow–Fraser, 1998. Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and submergent macrophytes in a Great Lakes wetland. Can. J. Fish. aquat. Sci. 55: 1189–1197.Google Scholar
  39. Marker, A. F. H., E. A. Nusch, H. Rai & B. Rieman, 1980. The measurement of photosynthetic pigments in freshwater and standardisation of methods: conclusions and recommendations. Arch. Hydrobiol./Ergeb. Limnol. 14: 91–106.Google Scholar
  40. Matthews, M. & J. D. Reynolds, 1992. Ecological impact of crayfish plague in Ireland. Hydrobiologia 234: 1–6.Google Scholar
  41. Matveev, V., L. Matveeva & G. J. Jones, 2000. Relative impacts of Daphnia grazing and direct stimulation by fish on phytoplankton abundance in mesocosm experiments. Freshwat. Biol.44: 375–385.Google Scholar
  42. McCormick, P., 1990. Direct and indirect effects of consumers on benthic algae in isolated pools of an ephemeral stream. Can. J. Fish. aquat. Sci. 47: 2057–2065.Google Scholar
  43. Meijer, M.-L., M. W. De Haan, A. W. Breukelaar & H. Buitfeld, 1990. Is the reduction of the benthivorous fish an important cause of light transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201: 303–315.Google Scholar
  44. Momot, W. T., 1995. Redefining the role of crayfish in aquatic ecosystems. Rev. Fish. Sci. 3: 33–63.Google Scholar
  45. Montes, C., M. A. Bravo, A. Baltanás, P. J. Gutiérrez & C. M. Duarte, 1993. Ecological baselines for an integral management of the American red swamp crayfish (Procambarus clarkii) in the Doñana National Park. ICONA, Madrid [in Spanish].Google Scholar
  46. Nakashima, B. S. & W. C. Leggett, 1980. The role of fishes in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 37: 1540–1549.Google Scholar
  47. Nalepa, T. F., W. S. Gardner & J. M. Makzyk, 1983. Phosphorus release from three kinds of benthic invertebrates: effects on substrate and water medium. Can. J. Fish. aquat. Sci. 40: 810–813.Google Scholar
  48. Nyström, P., C. Brönmark & W. Granéli, 1996. Patterns in benthic food webs: a role of omnivorous crayfish. Freshwat. Biol. 36: 631–646.Google Scholar
  49. Penn, G. H., Jr., 1943. A study of the life history of the Louisiana red-crawfish, Cambarus clarkii Girard. Ecology 24: 1–18.Google Scholar
  50. Peters, R. H., 1975. Phosphorus regeneration by natural populations of limnetic zooplankton. Verh. Int. Ver. Limnol. 19: 273–279.Google Scholar
  51. Peters, R. H. & F. H. Rigler, 1973. Phosphorus release by Daphnia. Limnol. Oceanogr. 18: 821–839.Google Scholar
  52. Revsbech, N. P., J. Sörensen, T. H. Blackburn & J. P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 25: 403–411.Google Scholar
  53. Sánchez-Carrillo, S. & M. Alvarez–Cobelas, 2001. Nutrient dynamics and eutrophication patterns in a semi-arid wetland: effects of fluctuating hydrology. Wat. Air Soil Pollut. 131: 97–118.Google Scholar
  54. Sommer, T. R. & C. R. Goldman, 1983. The crayfish Procambarus clarkii from California ricefields: ecology, problems and potential harvest. Freshwat. Crayfish 5: 418–428.Google Scholar
  55. Søndergaard M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and windexposed Lake Arresø, Denmark. Hydrobiologia 228: 91–99.Google Scholar
  56. SSSA (Soil Science Society of America), 1971. In Walsh, L. M. (ed.), Instrumental Methods for Analysis of Soils and Plant Tissues. Madison, WI: 222 pp.Google Scholar
  57. StatSoft Inc., 1995. STATISTICA for Windows. Tulsa, OK, U.S.A.Google Scholar
  58. Tatrai, I. & V. Istvanovics, 1986. The role of fish in the regulation of nutrient cycling in Lake Balaton, Hungary. Freshwat. Biol. 16: 417–424.Google Scholar
  59. Vanni, M. J. & D. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the 'top-down' effect of fish on algae in lakes. Ecology 78: 21–40.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • David G. Angeler
    • 1
  • Salvador Sánchez-Carrillo
    • 1
  • Gregorio García
    • 3
  • Miguel Alvarez-Cobelas
    • 1
  1. 1.Centro de Ciencias MedioambientalesCSICMadridSpain
  2. 2.Facultad de Ciencias del MedioambienteUniversidad de Castilla – La ManchaToledoSpain
  3. 3.Area de Edafología y Quimica Agrícola, Dpt. Producción AgrariaUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations