Mathematical Notes

, Volume 71, Issue 1–2, pp 110–117 | Cite as

On \({\text{c - 3}} \)-Transitive Automorphism Groups of Cyclically Ordered Sets

  • V. M. Tararin


An automorphism group \(G\) of a cyclically ordered set \(\left\langle {X,C} \right\rangle \) is said to be \({\text{c - 3}}\)-transitive if for any elements \(x_i ,y_i \in {\text{X }},{\text{ }}i = 1,2,3\), such that \(C(x_1 ,x_2 ,x_3 )\) and \(C(y_1 ,y_2 ,y_3 )\) there exists an element \(g \in G\) satisfying \(g(x_i ) = y_i \), \(i = 1,2,3\). We prove that if an automorphism group of a cyclically ordered set is \({\text{c - 3}}\)-transitive, then it is simple. A description of \({\text{c - 3}}\)-transitive automorphism groups with Abelian two-point stabilizer is given.

cyclic order automorphism group simple group transitivity stabilizer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.Google Scholar
  2. 2.
    V. M. Kopytov, Lattice-Ordered Groups [in Russian], Nauka, Moscow, 1984.Google Scholar
  3. 3.
    G. Higman, “The units of group-rings,” Proc. London Math. Soc., 46 (1940), no. 2, 231–248.Google Scholar
  4. 4.
    V. M. Tararin, “O-2-transitive automorphism groups with Abelian point stabilizer,” Mat. Zametki [Math. Notes], 65 (1999), no. 2, 289–293.Google Scholar
  5. 5.
    L. Fuchs, Infinite Abelian Groups, vol. 2, Academic Press, New York-London, 1973.Google Scholar
  6. 6.
    A. I. Kokorin and V. M. Kopytov, Linearly Ordered Groups [in Russian], Nauka, Moscow, 1972.Google Scholar
  7. 7.
    M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], 3d ed., Nauka, Moscow, 1982.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. M. Tararin
    • 1
  1. 1.Institute of Applied Mathematical Analysis Karelian Research CenterRussian Academy of SciencesRussia

Personalised recommendations