Neurochemical Research

, Volume 26, Issue 11, pp 1237–1244

Concentrations of Different Sterols in the Striatum and Serum of 3-Nitropropionic Acid-Treated Wistar and Lewis Rats

  • C. E. Teunissen
  • M. Mulder
  • J. de Vente
  • K. von Bergmann
  • C. De Bruijn
  • H. W. M. Steinbusch
  • D. Lütjohann
Article
  • 53 Downloads

Abstract

In the present study, we examined the long-term effect of oxidative stress induced neurodegeneration on sterol concentrations in striatum and serum of Wistar and Lewis rats. Three weeks after treatment with 3-nitropropionic acid, no differences in 24S-hydroxycholesterol concentrations were observed in striatal homogenates and serum. Ratios of striatal campesterol to cholesterol were higher after 3-nitropropionic acid treatment as compared to controls of both rat strains suggesting an increased passage of this exogenous plant sterol across the blood-brain-barrier. Ratios of lathosterol to cholesterol in serum and striatum were lower in treated rats as compared with controls of both rat strains. Absolute concentrations of serum and striatal cholesterol precursors and plant sterols differed between the controls of both rat strains. It was concluded that the changes observed in sterol concentrations in the striatum and serum indicate that cholesterol homeostasis may be affected during neurodegenerative processes associated with blood-brain-barrier damage.

Neurodegeneration 24S-hydroxycholesterol plant sterols cholesterol homeostasis striatum blood-brain-barrier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Bretillon, L., Lütjohann, D., Stahle, L., Widhe, T., Bindl, L., Eggertsen, G., Diczfalusy, U., and Björkhem, I. 2000. Plasma levels of 24S-hydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface. J. Lipid. Res. 41:840–845.Google Scholar
  2. 2.
    Kesaniemi, Y. A. 1996. Genetics and cholesterol metabolism. Curr. Opin. Lipidol. 7:124–131.Google Scholar
  3. 3.
    Lütjohann, D., Breuer, O., Ahlborg, G., Nennesmo, I., Siden, A., Diczfalusy, U., and Björkhem, I. 1996. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl. Acad. Sci. USA 93:9799–9804.Google Scholar
  4. 4.
    Wender, M., Adamczewska-Goncerzewicz, Z., and Szczech, J. 1994. Free sterols in senile human brain. Folia Neuropathol. 32:75–79.Google Scholar
  5. 5.
    Dorszewska, J. and Adamczewska-Goncerzewicz, Z. 1997. Free sterols of the cerebral white matter in experimental severe hypoxia. Folia Neuropathol. 35:115–120.Google Scholar
  6. 6.
    Mason, R. P., Shoemaker, W. J., Shajenko, L., Chambers, T. E., and Herbette, L. G. 1992. Evidence for changes in the Alzheimer's disease brain cortical membrane structure mediated by cholesterol. Neurobiol. Aging 13:413–419.Google Scholar
  7. 7.
    Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., and Siegel, G. 2000. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57:1439–1443.Google Scholar
  8. 8.
    Spady, D. K. and Dietschy, J. M. 1983. Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J. Lipid. Res. 24:303–315.Google Scholar
  9. 9.
    Princen, H. M. G., Post, S. M., and Twisk, J. 1997. Regulation of bile acid biosynthesis. Curr. Pharmac. Design 3:59–84.Google Scholar
  10. 10.
    Dhopeshwarkar, G. A. and Subramanian, C. 1981. Lack of catabolism of brain cholesterol. Lipids 16:389–392.Google Scholar
  11. 11.
    Björkhem, I., Diczfalusy, U., and Lütjohann, D. 1999. Removal of cholesterol from extrahepatic sources by oxidative mechanisms. Curr. Opin. Lipidol. 10:161–165.Google Scholar
  12. 12.
    Meaney, S., Hassan, M., Sakinis, A., Lütjohann, D., von Bergmann, K., Wennmalm, A., Diczfalusy, U., and Björkhem, I. 2001. Studies on the formation and flux of oxysterols in vivo with stable isotopes. Evidence that the three major oxysterols in human circulation originate from functionally distinct pools of cholesterol. J. Lipid. Res. 42:70–78.Google Scholar
  13. 13.
    Lund, E. G., Guileyardo, J. M., and Russell, D. W. 1999. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl. Acad. Sci. USA 96:7238–7243.Google Scholar
  14. 14.
    Papassotiropoulos, A., Lütjohann, D., Bagli, M., Locatelli, S., Jessen, F., Rao, M. L., Maier, W., Björkhem, I., von Bergmann, K., and Heun, R. 2000. Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker for Alzheimer's disease. NeuroReport 11:1959–1962.Google Scholar
  15. 15.
    Lütjohann, D., Papassotiropoulos, A., Bjorkhem, I., Locatelli, S., Bagli, M., Oehring, R. D., Schlegel, U., Jessen, F., Rao, M. L., von Bergmann, K., and Heun, R. 2000. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J. Lipid. Res. 41:195–198.Google Scholar
  16. 16.
    Teunissen, C. E., Steinbusch, H. W. M., Angevaren, M., Appels, M., De Bruijn, C., Prickaerts, J., and de Vente, J. 2001. Behavioural correlates of striatal glial fibrillary acidic protein in the 3-nitropropionic acid rat model: disturbed walking pattern and spatial orientation. Neuroscience 105:153–167.Google Scholar
  17. 17.
    Hamilton, B. F. and Gould, D. H. 1987. Correlation of morphologic brain lesions with physiologic alterations and blood-brain barrier impairment in 3-nitropropionic acid toxicity in rats. Acta Neuropathol. 74:67–74.Google Scholar
  18. 18.
    Nishino, H., Kumazaki, M., Fukuda, A., Fujimoto, I., Shimano, Y., Hida, H., Sakurai, T., Deshpande, S. B., Shimizu, H., Morikawa, S., and Inubushi, T. 1997. Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity. Neurosci. Res. 27:343–355.Google Scholar
  19. 19.
    Alexi, T., Hughes, P. E., Faull, R. L., and Williams, C. E. 1998. 3-Nitropropionic acid's lethal triplet: cooperative pathways of neurodegeneration. NeuroReport 9:R57–R64.Google Scholar
  20. 20.
    Page, K. J., Dunnett, S. B., and Everitt, B. J. 1998. 3-Nitropropionic acid-induced changes in the expression of metabolic and astrocyte mRNAs. NeuroReport 9:2881–2886.Google Scholar
  21. 21.
    Vis, J. C., Verbeek, M. M., De Waal, R. M., Ten Donkelaar, H. J., and Kremer, H. P. 1999. 3-Nitropropionic acid induces a spectrum of Huntington's disease-like neuropathology in rat striatum. Neuropathol. Appl. Neurobiol. 25:513–521.Google Scholar
  22. 22.
    Ouary, S., Bizat, N., Altairac, S., Menetrat, H., Mittoux, V., Conde, F., Hantraye, P., and Brouillet, E. 2000. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Neuroscience 97:521–530.Google Scholar
  23. 23.
    O'Callaghan, J. P. 1991. Quantification of glial fibrillary acidic protein: comparison of slot-immunobinding assays with a novel sandwich ELISA. Neurotoxicol. Teratol. 13:275–281.Google Scholar
  24. 24.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, F. J. 1951. Protein measurement with the Folin reagent. J. Biol. Chem. 193:265–275.Google Scholar
  25. 25.
    Grundy, S. M. 1991. George Lyman Duff Memorial Lecture. Multifactorial etiology of hypercholesterolemia. Implications for prevention of coronary heart disease. Arterioscler. Thromb. 11:1619–1635.Google Scholar
  26. 26.
    Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., Storey, E., Srivastava, R., Rosen, B. R., and Hyman, B. T. 1993. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neuroscience 13:4181–4192.Google Scholar
  27. 27.
    Brouillet, E., Conde, F., Beal, M. F., and Hantraye, P. 1999. Replicating Huntington's disease phenotype in experimental animals. Prog. Neurobiol. 59:427–468.Google Scholar
  28. 28.
    Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., Aksenova, M., Gabbita, S. P., Wu, J. F., Carney, J. M., and et al. 1995. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65:2146–2156.Google Scholar
  29. 29.
    Andersson, M., Elmberger, P. G., Edlund, C., Kristensson, K., and Dallner, G. 1990. Rates of cholesterol, ubiquinone, dolichol and dolichyl-P biosynthesis in rat brain slices. FEBS Lett. 269:15–18.Google Scholar
  30. 30.
    Bochelen, D., Langley, K., Adamczyk, M., Kupferberg, A., Hor, F., Vincendon, G., and Mersel, M. 2000. 7 beta-hydroxysterol is cytotoxic to neonatal rat astrocytes in primary culture when cAMP levels are increased. J. Neurosci. Res. 62:99–111.Google Scholar
  31. 31.
    Gimenez y Ribotta, M., Rajaofetra, N., Morin-Richaud, C., Alonso, G., Bochelen, D., Sandillon, F., Legrand, A., Mersel, M., and Privat, A. 1995. Oxysterol (7 beta-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction. J. Neurosci. Res. 41:79–95.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • C. E. Teunissen
    • 1
  • M. Mulder
    • 1
  • J. de Vente
    • 1
  • K. von Bergmann
    • 2
  • C. De Bruijn
    • 1
  • H. W. M. Steinbusch
    • 1
  • D. Lütjohann
    • 2
  1. 1.European Graduate School of Neuroscience (Euron), Department of Psychiatry and NeuropsychologyUniversity of MaastrichtMaastrichtThe Netherlands
  2. 2.Department of Clinical PharmacologyUniversity of BonnBonnGermany

Personalised recommendations