Advertisement

Problems in the Local Hyperthermia of Inductively Heated Embolized Tissues

  • A. M. Granov
  • O. V. Muratov
  • V. F. Frolov
Article

Abstract

A mathematical model is suggested for the high-frequency heating of a live tissue containing a small malignant tumor. The tumor is preliminarily filled with a polymer to prevent heat extraction by flowing blood. The polymer must contain a dispersed ferromagnetic to ensure inductive heating. The unsteady-state temperature profiles obtained by numerically solving the biothermal equation are used to estimate the degree of thermal destruction of the tumor cells.

Keywords

Polymer Tumor Cell Mathematical Model Malignant Tumor Live Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Yaremenko, S.P., Konoplyannikov, A.G., and Vain-son, A.A., Klinicheskaya radiobiologiya (Clinical Radio-biology), Moscow: Meditsina, 1992.Google Scholar
  2. 2.
    Gusev, A.N., Sigal, V.L., and Osinskii, S.P., Teplofizicheskie modeli gipertermii opukholei (Thermophysical Models of Tumor Hyperthermia), Kiev: Naukova Dumka, 1989.Google Scholar
  3. 3.
    Levinson, A.R., Elektromeditsinskaya apparatura (Electric Medical Instrumentation), Moscow: Meditsina, 1981.Google Scholar
  4. 4.
    Shul'man, Z.P., Markova, L.V., Khusid, B.M., et al., Biothermal Problem in Hyperthermia, Preprint, Minsk; ITMO, 1991, no. 4.Google Scholar
  5. 5.
    Konoplyannikov, A.G. and Kuryshev, O.K., Blood Flow in Normal and Tumor Tissues, Med. Radiobiol., 1988, vol. 33, no. 5, p. 26.Google Scholar
  6. 6.
    Folkow, B. and Neil, E., Circulation, New York, 1971. Translated under the title Krovoobrashchenie, Moscow: Meditsina, 1976.Google Scholar
  7. 7.
    Losev, V.S., Mathematical Modeling of Heat Regulation in Local Hyperthermia, Biofizika, 1993, vol. 38, no. 5, p. 843.Google Scholar
  8. 8.
    Kovach, R.I., Calculating the Temperature Field in Biological Objects Heated by Microwaves, Med. Tekh., 1971, no. 6, p. 12.Google Scholar
  9. 9.
    Litvinov, V.G., Panteleev, A.D., Sigal, V.L., et al., Local Hyperthermia of Malignant Tumors: Formulating the Problem of the Optimization and Control of Heat Transfer in Tissues, Inzh.—Fiz. Zh., 1996, vol. 69, no. 4, p. 641.Google Scholar
  10. 10.
    Hand, J.W., Microwave Heating Patterns in Simple Tissue Models, Phis. Med. Biol., 1977, vol. 22, no. 5, p. 981.Google Scholar
  11. 11.
    Feigina, E.M., Reshenie obratnoi zadachi teploprovod-nosti pri modelirovanii teploperenosa v tkanyakh polykh organov (Solving the Inverse Problem of Heat Conduction in Modeling Heat Transfer in the Tissues of Hollow Organs), Available from VINITI, 1998, Omsk, no. 1270-V98.Google Scholar
  12. 12.
    Klepper, L.Ya., Program Package for Scheduling Fractional Irradiation of Malignant Tumors by Local Adjustment of the Mathematical Model, Med. Tekh., 1998, no. 2, p. 7.Google Scholar
  13. 13.
    Klepper, L.Ya., Topical Problems of Mathematical Modeling and Optimization in Radiology, Vopr. Onkol., 1997, vol. 43, no. 5, p. 538.Google Scholar
  14. 14.
    Hahn, G.M., Hyperthermia for the Engineer: A Short Biological Primer, IEEE Trans. Biomed. Eng., 1984, vol. 31, no. 1, p. 3.Google Scholar
  15. 15.
    Shul'man, Z.P., Khusid, B.M., and Fain, N.V., Theoretical Analysis of Thermal Processes in a Live Tissue Subjected to Local Hyperthermia: I. Biothermal Equation and Local Hyperthermia, Inzh.—Fiz. Zh., 1996, vol. 69, no. 3, p. 352.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • A. M. Granov
    • 1
  • O. V. Muratov
    • 2
  • V. F. Frolov
    • 2
  1. 1.Central Research Institute of X-ray RadiologySt. PetersburgRussia
  2. 2.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations