Biotechnology Letters

, Volume 24, Issue 2, pp 109–114 | Cite as

Enhancement of (R,R)-2,3-butanediol production from xylose by Paenibacillus polymyxa at elevated temperatures

  • B. Marwoto
  • Y. Nakashimada
  • T. Kakizono
  • N. Nishio
Article

Abstract

Conversion of xylose to (R,R)-2,3-butanediol by Paenibacillus polymyxa in anaerobic batch and continuous cultures was increased by 39% and 52%, respectively, by increasing the growth temperatures from 30 to 39 °C. There was no effect of temperature when glucose was used as substrate. 39 mM (R,R)-2,3-butanediol, 65 mM ethanol, and 47 mM acetate were obtained from 100 mM xylose after 24 h batch culture at 39 °C. With 100 mM glucose and 100 mM xylose used together in a batch culture at 39 °C, all xylose was consumed after 24 h and 82 mM (R,R)-2,3-butanediol, 124 mM ethanol and 33 mM acetate were produced.

3-butanediol Paenibacillus polymyxa pH temperature xylose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam GA, Stainer RY (1945) Production and properties of 2,3-butanediol. III. Studies on the biochemistry of carbohydrate fermentation by Aerobacillus polymyxa. Can. J. Res. 23B: 1-9.Google Scholar
  2. Clark D, Cronan Jr, EJ (1980) Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J. Bacteriol. 144: 179-184.Google Scholar
  3. de Mas C, Jansen NB, Tsao T (1988) Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol. Bioeng. 31: 366-377.Google Scholar
  4. Erickson LE, Minkevich IG, Eroshin VK (1979) Utilization of mass-energy balance regularities in the analysis of continuousculture data. Biotechnol. Bioeng. 21: 575-591.Google Scholar
  5. Esener AA, Roels JA, Kossen NWF (1983) The influence of temperature on the energetics ofKlebsiella pneumoniae. Biotechnol. Bioeng. 25: 2093-2098.Google Scholar
  6. Jansen NB, Tsao GT (1983) Bioconversion of pentose to 2,3-butanediol by Klebsiella pneumoniae. Adv. Biochem. Eng. Biotechnol. 27: 85-99.Google Scholar
  7. Jansen NB, Flickinger MC, Tsao GT (1984a) Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol. Bioeng. 26: 362-369.Google Scholar
  8. Jansen NB, Flickinger MC, Tsao GT (1984b) Application of bioenergetics to modelling the microbial conversion of D-xylose to 2,3-butanediol. Biotechnol. Bioeng. 26: 573-582.Google Scholar
  9. Jeffries TW (1983) Utilization of xylose by bacteria, yeast and fungi. In: Fiechter A, ed. Advances in Biochemical Engineering/ Biotechnology, Vol. 27. Berlin, Heidelsberg, New York: Springer-Verlag, pp. 1-32.Google Scholar
  10. Klingenberg M (1985) Metabolites 2: tri-and dicarboxylic acids, purines, pyrimidines and derivatives, coenzymes, inorganic compounds. In: Bergmeyer HU, ed. Methods of Enzymatic Analysis, Vol. 7, New York, London: Academic Press, pp. 251-267.Google Scholar
  11. Laube VM, Groleau D, Martin SM (1984) 2,3-Butanediol production from xylose and other hemicellulose components by Bacillus polymyxa. Biotechnol. Lett. 6: 257-262.Google Scholar
  12. Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 2985-985.Google Scholar
  13. Nakashimada Y, Kanai K, Nishio N (1998) Optimization of dilution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol. Lett. 20: 1133-1138.Google Scholar
  14. Pirt SJ, Callow DS (1958) Exocellular product formation by microorganisms in continuous culture. I. Production of 2,3-butanediol by Aerobacter aerogenes in single stage process. J. Appl. Bacteriol. 21: 188-205.Google Scholar
  15. Smith PK, Krohn RI, Hermanson GT, Malia AK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85.Google Scholar
  16. Takahashi N, Iwami Y, Yamada T (1991) Metabolism of intracellular polysaccharide in the cell of Streptococcus mutants under strictly anaerobic conditions. Oral Microbiol. Immunol. 6: 299-304.Google Scholar
  17. Ui S, Masuda H, Muraki H (1983) Laboratory-scale production of 2,3-butanediol isomers [D (?), L (+), and meso] by bacterial fermentations. J. Ferment. Technol. 61: 253-259.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • B. Marwoto
    • 1
  • Y. Nakashimada
    • 1
  • T. Kakizono
    • 1
  • N. Nishio
    • 1
  1. 1.Department of Molecular Biotechnology, Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations