Advertisement

Journal of Atmospheric Chemistry

, Volume 41, Issue 1, pp 21–48 | Cite as

Estimates of the Chemical Budget for Ozone at Waliguan Observatory

  • Jianzhong Ma
  • Jie Tang
  • Xiuji Zhou
  • Xiaoshan Zhang
Article

Abstract

Waliguan Observatory (WO) is an in-land Global Atmosphere Watch (GAW) baseline station on the Tibetan plateau. In addition to the routine GAW measurement program at WO, measurements of trace gases, especially ozone precursors, were made for some periods from 1994 to 1996. The ozone chemical budget at WO was estimated using a box model constrained by these measured trace gas concentrations and meteorological variables. Air masses at WO are usually affected by the boundary layer (BL) in the daytime associated with an upslope flow, while it is affected by the free troposphere (FT) at night associated with a downslope flow. An anti-relationship between ozone and water vapor concentrations at WO is found by investigating the average diurnal cycle pattern of ozone and water vapor under clear sky conditions. This relationship implies that air masses at WO have both the FT and BL characteristics. Model simulations were carried out for clear sky conditions in January and July of 1996, respectively. The chemical characteristics of mixed air masses (MC) and of free tropospheric air masses (FT) at WO were investigated. The effects of the variation in NOx and water vapor concentrations on the chemical budget of ozone at WO were evaluated for the considered periods of time. It was shown that ozone was net produced in January and net destroyed in July for both FT and MC conditions at WO. The estimated net ozone production rate at WO was –0.1 to 0.4 ppbv day−1 in FT air of January, 0.0 to 1.0 ppbv day−1 in MC air of January, –4.9 to –0.2 ppbv day−1 in FT air of July, and –5.1 to 2.1 ppbv day−1 in MC air of July.

chemical budget nitrogen oxides ozone remote troposphere water vapor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas, E. and Ridley, B. A., 1996: The Mauna Loa Observatory Photochemistry Experiment: An introduction, J. Geophys. Res. 101, 14,531–14,541.Google Scholar
  2. Ayers, G. P., Penkett, S. A., Gillett, R. W., Bandy, B., Gabally, I. E., Meyer, C. P., Elsworth, C. M., Bentley, S. T., and Forgan, B. W., 1992: Evidence for photochemical control of ozone concentrations in unpolluted marine air, Nature 360, 446–448.Google Scholar
  3. Ayers, G. P., Penkett, S. A., Gillett, R. W., Bandy, B., Gabally, I. E., Meyer, C. P., Elsworth, C. M., Bentley, S. T., and Forgan, B. W., 1996: Annual cycle of peroxides and ozone in marine air at Cape Grim, Tasmania, J. Atmos. Chem. 23, 221–252.Google Scholar
  4. Blake, N. J, Blake, D. R., Sive, B. C., Chen, T.-Y., Rowland, F. H., Collins, Jr, J. E., Sachse, G. W., and Anderson, B. E., 1996: Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region, J. Geophys. Res. 101, 24,151–24,164.Google Scholar
  5. Brasseur, G. P, Mueller, J.-F., and Granier, C., 1996: Atmospheric impact of NOx emissions by subsonic aircraft: A three-dimensional model study, J. Geophys. Res. 101, 1423–1428.Google Scholar
  6. Cantrell, C. A., Shetter, R. E., Gilpin, T. M., and Calvert, J. G., 1996a: Peroxy radicals measured during MLOPEX II: The data and first analysis, J. Geophys. Res. 101, 14,643–14,652.Google Scholar
  7. Cantrell, C. A., Shetter, R. E., Gilpin, T.M., Calvert, J. G., Eisele, F. I., and Tanner, D. J., 1996b: Peroxy radical concentrations measured and calculated from trace gas measurements in MLOPEX II, J. Geophys. Res. 101, 14,653–14,664.Google Scholar
  8. Carpenter, L. J., Monks, P. S., Gabally, I. A., Meyer, C. P., Bandy, B. J., and Penkett, S. A., 1997: A study of peroxy radicals and ozone photochemistry at coastal sites in the northern and southern hemispheres, J. Geophys. Res. 102, 25,417–25,427.Google Scholar
  9. Carroll, M. A., Ridley, B. A., Montzka, D. D., Hübler, G., Walega, J. G., Norton, R. B., Huebert, B. J., and Grahek, F. E., 1992: Measurements of nitric oxide and nitrogen dioxide during the Mauna Lao Observatory Photochemistry Experiment, J. Geophys. Res. 97, 10,361–10,374.Google Scholar
  10. Carsey, T. P., Churchill, D. D., Farmer, M. L., Fischer, C. J., Pzenny, A. A., Ross, V. B., Saltzman, E. S., Springer, Young, M., and Bonsang B., 1997: Nitrogen oxide and ozone production in the North Atlantic marine boundary layer, J. Geophys. Res. 102, 10,653–10,665.Google Scholar
  11. Chameides, W. and Walker, J. C. G., 1973: A photochemical theory for tropospheric ozone, J. Geophys. Res. 78, 8751–8760.Google Scholar
  12. Chameides, W., Davids, D., Rodgers, M., Bradshaw, J., Sandholm, S., Sachse, G., Hill, G., Gregory, G., and Rasmussen, R., 1987: Net ozone photochemical production over the eastern and central North Pacific as inferred from GTE/CITE 1 observations during fall 1983, J. Geophys. Res. 92, 2131–2152.Google Scholar
  13. Chameides, W., Davids, D., Gregory, G., Sachse, G., and Torres, A., 1989: Ozone precursors and ozone photochemistry over eastern North Pacific Ocean during the spring of 1984 based on the NASA GTE/CITE 1 airborne observations, J. Geophys. Res. 94, 9799–9809.Google Scholar
  14. Chameides, W., Davids, Bradshaw, J., Sandholm, S., Rodgers, M., Baum, B., Ridley, B., Madronich, S., Carroll, M. A., Gregory, G., Schiff, H. I., Hastie, D. R., Torres, A., and Condon, E., 1990: Observed and model-calculated NO2/NO ratios in tropospheric air sampled during the NASA GTE/CITE 2 field study, J. Geophys. Res. 95, 10,235–10,247.Google Scholar
  15. Cox, R. A., Eggleton, A. E. J., Derwent, R. G., Lovelock, J. E., and Pack, D. H., 1975: Long-range transport of photochemical ozone in north-western Europe, Nature 255, 118–121.Google Scholar
  16. Cox, R. A., 1999: Ozone and peroxy radical budgets in the marine boundary layer: Modeling the effect of NOx, J. Geophys. Res., 104, 8047–8050.Google Scholar
  17. Crutzen, P. J., 1973: Photochemical reactions initialed by and influencing ozone in unpolluted tropospheric air, Tellus 26, 47–57.Google Scholar
  18. Crutzen P. J., 1979: The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Ann. Rev. Earth Planet Sci. 7, 443–472.Google Scholar
  19. Crutzen P. J., 1988: Tropospheric ozone: An overview, in I. Isaksen (ed.), NATO Workshop on Tropospheric Ozone: Regional and Global Ozone and its Environmental Consequences, D. Reidel, Hingham, Mass., 3–33.Google Scholar
  20. Davis, D. D., Chen, G., Chameides, W., Bradshaw, J., Sandholm, S., Rodgers, M., Schendal, J., Madronich, S., Sachse, G., Gregory G., Anderson, B., Barrick, J., Shipham, M., Collins, J., Wade, L., and Blake, D., 1993: A photostationary state analysis of the NO2-NO system based on airborne observations from the subtropical/tropical North and South Atlantic, J. Geophys. Res. 98, 23,501–23,523.Google Scholar
  21. Davis, D. D., Crawford, J., Chen, G., Chameides, W., Liu, S., Bradshaw, J., Sandholm, S., Sachse, G., Gregory G., Anderson, B., Barrick, J., Bachmeier, A., Collins, J., Browell, E., Blake, D., Rowland, S., Kondo, Y., Sigh, H., Tabot, R., Heikes, B., Merrill, J., Rodriguez, J., and Newell, R. E., 1996: Assessment of ozone photochemistry in the Western North Pacific as inferred from PEM-West A observation during the fall 1991, J. Geophys. Res. 101, 2111–2134.Google Scholar
  22. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1992: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, JPL Technical Report 94-26, California Institute of Technology, Pasadena.Google Scholar
  23. Fishman, J., Soloman, S., and Crutzen, P. J., 1979: Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone, Tellus, 31, 432–446.Google Scholar
  24. Harris, J. M., Oltmans, S. J., Dlugokencky, E. J., Novelli, P. C., Johnson, B. J., and Mefford, T., 1998: An investigation into the source of the springtime tropospheric ozone maximum at Mauna Loa Observatory, Geophys. Res. Lett. 25, 1895–1898.Google Scholar
  25. Hauglustaine, D. A., Madronich, S., Ridley, B. A., Walega, J. G., Cantrell, C. A., Shetter, R. E., and Hübler, G., 1996: Observed and model-calculated photostationary state at Mauna Loa Observatory during MLOPEX 2, J. Geophys. Res. 101, 14,681–14,696.Google Scholar
  26. Hauglustaine, D. A., Madronich, S., Ridley, B. A., Flocke, S. J., Cantrell, C. A., Eisele, F. L., Shetter, R. E., Tanner, D. J., Ginoux, P., and Atlas E. L., 1999: Photochemistry and budget of ozone during theMauna Loa Photochemistry Experiment (MLOPEX 2), J. Geophys. Res. 104, 30,275–30,307.Google Scholar
  27. Heikes, B., Lee, M., Bradshaw, J., Sandholm, S., Davis, D. D., Crawford, J., Rodriguez, J., Liu, S., McKeen, S., Thornton, D., Brandy, A., Gregory G., Talbot, R., and Blake, D., 1996a: Hydrogen peroxide methylhydroperoxide distributions related to ozone and odd hydrogen over the North Pacific in the fall 1991, J. Geophys. Res. 101, 1891–1905.Google Scholar
  28. Heikes, B., Lee, M., Jacob, D., Talbot, R., Bradshaw, J., Singh, H., Blake, D., Anderson, B., Fuelberg, H., and Thompson, A., 1996b: Ozone, hydrogenperoxides, oxides of nitrogen, and hydrocarbon budgets in the marine boundary layer over the South Atlantic, J. Geophys. Res. 101, 24,221–24,234.Google Scholar
  29. Hoell, J. M. Jr., Gregory, G. L., McDougal, D. S., Torres, A. L., Davis, D. D., Bradshaw, J., Rodgers, M. O., Ridley, B. A., and Carroll, M. A., 1987: Airborne intercomparisons of nitric oxide measurement techniques, J. Geophys. Res. 92, 1995–2008.Google Scholar
  30. Jaeglé, L., et al., 1997: Observed OH and HO2 in the upper troposphere suggest a major source from convection injection of peroxides, Geophys. Res. Lett. 24, 3181–3184.Google Scholar
  31. Jaffe, D. A., Honrath, R. E., Zhang, L., Akimoto, H., Shimizu, A., Mukai, H., Murano, K., Hatakeyama, S., and Merrill, J. T., 1996: Measurements of NO, NOy, CO and O3 and estimation of the ozone production rate at Oki Island, Japan, during PEM-West, J. Geophys. Res. 101, 2037–2048.Google Scholar
  32. Johnston, H. and Kinnison, D., 1998: Methane photooxidation in the atmosphere: Contrast between two methods of analysis, J. Geophys. Res. 103, 21,967–21,984.Google Scholar
  33. Junkermann, W. and Stockwell W. R., 1999: On the budget of photooxidants in the marine boundary layer of the tropical South Atlantic, J. Geophys. Res. 104, 8039–8040.Google Scholar
  34. Kelly, T. J., Stedman, D. H., Ritter, J. A., and Harvey, R. B., 1980: Measurements of oxides of nitrogen and nitric acid in clean air, J. Geophys. Res. 85, 7417–7425.Google Scholar
  35. Lauzrus, A. L., Kok G. L., Gitlin S. N., Lind J. A., and Mclaren S. E., 1985: Automated fluorometric method for hydrogen peroxide in air, Anal. Chem. 58, 594–597.Google Scholar
  36. Lelieveld, J. and Crutzen, P. J., 1994: Role of deep cloud convection in the ozone budget of the troposphere, Science 264, 1759–1761.Google Scholar
  37. Li, S. M., Barrie, L. A., and Toom, D., 1996: Seasonal variation of methanesulfonate, non-sea-salt sulfate, and sulfur dioxide at three sites in Canada, J. Geophys. Res. 101, 4165–4173.Google Scholar
  38. Lin, X., Trainer, M., and Liu, S. C., 1988: On the non-linearity of the tropospheric ozone production, J. Geophys. Res. 93, 15,879–15,888.Google Scholar
  39. Liu, S. C., Kley, D., McFarland, M., Mahlman, J. D., and Levy II, H., 1980: On the origin of tropospheric ozone, J. Geophys. Res. 85, 7546–7552.Google Scholar
  40. Liu, S. C., Trainer, M. Fehsenfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D.W., Hübler, G., and Murphy, P. C., 1987: Ozone production in the rural troposphere and the implications for regional and global ozone distributions, J. Geophys. Res. 92, 4191–4207.Google Scholar
  41. Liu, S. C., Trainer, M., Carroll, M. A., Hübler, G., Montzka, D. D., Norton, R. B., Ridley, B. A., Walega, J. G., Atlas, E. L., Heikes, B. G., Huebert, B. J., and Warren, W., 1992: A study of the photochemistry and ozone budget during Mauna Lao Observatory Photochemistry Experiment, J. Geophys. Res. 97, 10,463–10,471.Google Scholar
  42. Ma, J. and Van Weele, M., 2000: Effect of stratospheric ozone depletion on the net production of ozone in polluted rural areas, Chemosphere: Global Change Science 2, 23–37.Google Scholar
  43. Madronich, S., 1987: Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res. 92, 9740–9752.Google Scholar
  44. Madronich, S. and Calvert, J. G., 1989: The NCAR master mechanism of the gas-phase chemistry-Version 2.0, Rep. NCAR/TN-333+STR, The National Center for Atmospheric Research, Boulder, Colorado.Google Scholar
  45. Madronich, S. and Calvert, J. G., 1990: Permutation reactions of organic peroxy radicals in the troposphere, J. Geophys. Res. 95, 5697–5715.Google Scholar
  46. Madronich, S., 1993: Tropospheric chemistry and its response to UV changes, in M. L. Chan (ed.), The Role of the Stratosphere in Global Change, NATO ASI Series I 8, Springer-Verlag Berlin Heidelberg, pp. 347–461.Google Scholar
  47. Oltmans, S. J., Hofmann, D. J., Lathrop, J. A., Harris, J. M., Komhyr, W. D., and Kuniyuki, D., 1996: Tropospheric ozone during Mauna Lao Observatory Photochemistry Experiment 2 compared to long-term measurements from surface and ozonesonde observations, J. Geophys. Res. 101, 14,569–14,580.Google Scholar
  48. Parrish, D. D., Trainer, M., Williams, E. J., Fahey, D.W., Hübler, G., Eubank, S., Liu, S., Murphy, P. C., Albritton, D. L., and Fehsenfeld, F. C., 1986: Measurements of the NOx?O3 photostationary state at Niwot Ridge, Colorado, J. Geophys. Res. 91, 5361–5370.Google Scholar
  49. Prather, M. J. and Jacob, D. J., 1997: A persistent imbalance in HOx and NOx photochemistry of the upper troposphere driven by deep tropical convection, Geophys. Res. Lett. 24, 3189–3192.Google Scholar
  50. Ridley, B. A., Carroll, M. A., and Gregory, G. L., 1987: Measurements of nitric oxide in the boundary layer and free troposphere over the Pacific Ocean, J. Geophys. Res. 92, 2025–2047.Google Scholar
  51. Ridley, B. A., Carroll, M. A., Dunlap, D. D., Trainer, M., Sachse, G.W., Gregory, G. L., and Condon, E. P., 1989: Measurements of NOx over the eastern North Pacific Ocean and southwestern United States during the spring 1984 NASA GTE/CITE aircraft program, J. Geophys. Res. 94, 5043–5067.Google Scholar
  52. Ridley, R. A. and Robinson, E., 1992: The Mauna Lao Observatory Photochemistry Experiment, J. Geophys. Res. 97, 10,285–10,290.Google Scholar
  53. Ridley, B. A., Madronich, S., Chatfield, R. B., Walega, J. G., Shetter, R. E., Carroll, M. A., and Montzka, D. D., 1992: Measurements and model simulations of the photostationary state during the Mauna Lao Observatory Photochemistry Experiment: Implication for radical concentrations and ozone production and loss rates, J. Geophys. Res. 97, 10,375–10,388.Google Scholar
  54. Ridley, B. A., Walega, J., Hübler, G., Montzka, D., Atlas, E., Hauglustaine, D., Grahek, F., Lind, J., Campos, T., Norton, R., Greenberg, J., Schauffler, S., Oltmans, S., and Whittlestone, S., 1998: Measurements of NOx and PAN and estimates of O3 production over the season during Mauna Lao Observatory Photochemistry Experiment 2, J. Geophys. Res. 103, 8323–8339.Google Scholar
  55. Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J., 1995: High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere, Nature 378, 50–54.Google Scholar
  56. Staffelbach, T. A., Kok, G. L., Heikes, B. G., McCully, B., Mackay, G. I., Karecki, D. R., and Schiff, H. I., 1996: Comparison of hydroperoxide measurements made during the Mauna Loa Observatory Photochemistry Experiment, J. Geophys. Res. 101, 14,729–14,739.Google Scholar
  57. Tang, J., Wen, Y. P., Xu, X. B., Zheng, X. D., Guo, S., and Zhao, Y. C., 1995: China Global Atmosphere Watch Baseline Observatory and its measurement program, CAMS Annual Report 1994-1995, China Meteorological Press, Beijing, pp. 56–65.Google Scholar
  58. Thompson, A. M., Johson, J. E., Trres, A. L., Bates, T. S., Kelly, K. C., Atlas, E., Greengerg, J. P., Donahue, N.M., Yvon, S. A., Saltzman, E. S., Heikes, B.G., Mosher, B.W., Shashkov, A. A., and Yegorov, V. I., 1993: Ozone observations and a model of marine boundary layer photochemistry during SAGA 3, J. Geophys. Res. 98, 16,955–16,968.Google Scholar
  59. Voltz, A., Mihelcic, D., Müsigen, P., Pätz, H. W., Pilwat, G., Gesis, H., and Kley, D., 1988: Ozone production in the Black Forest: Direct measurements of RO2, NOx and other relevant parameters, in I. Isaksen (ed.), NATO Workshop on Tropospheric Ozone: Regional and Global Ozone and its Environmental Consequences, D. Reidel, Hingham, Mass., pp. 293–302.Google Scholar
  60. Walega, J. G., Ridley, B. A., Madronich, S., Grahek, F. E., Shetter, J. D., Sauvain, T. D., Hahn, C. J., Merill, J. T., Bodhaine, B. A., and Robinson, E., 1992: Observations of peroxyacetyl nitrate, peroxypropionyl nitrate, methyl nitrate and ozone during the Mauna Loa Observatory Photochemistry Experiment, J. Geophys. Res. 97, 10,311–10,330.Google Scholar
  61. Wang, M. L., Li, X. S., and Cheng, H. B., 1996: The preliminary analysis of atmospheric concentrations of CH4, CO2 and CO in GAW's station of China, in X. J. Zhou (ed.), Atmospheric Ozone Changes over China and Their Effects on Climate and Environment, China Meteorological Press, Beijing, pp. 38–47.Google Scholar
  62. Wen, Y. P., Shao, Z. Q., Xu, X. B., Ji, B. F., and Zhu, Q. B., 1994: Observation and investigation of variabilities of baseline CO2 concentration over Waliguan Mountain in Qinghai Province of China. Acta Meteorologica Sinica 8, 255–362.Google Scholar
  63. World Meteorological Organization (WMO), 1995: Scientific Assessment of Ozone Depletion: 1994. Global Ozone Research and Monitoring Project, Rep. 37, Geneva, Switzerland.Google Scholar
  64. Xu, X. B., Xiang, R. B., Ding, G. A., and Li, X. S., 1996: Continental background NMHC concentration, composition and relation to surface O3, in X. J. Zhou (ed.), Atmospheric Ozone Changes over China and Their Effects on Climate and Environment, China Meteorological Press, Beijing, pp. 67–81.Google Scholar
  65. Yan, P., Li, X. S., Luo, C., Xu, X. B., Xiang, R. B., Ding, G. A., Tang, J., Wang, M. L., and Yu, X. L., 1997: Observational analysis of surface O3, NOx and SO2 in China, Quarterly J. Applied Meteorology 8, 53–61.Google Scholar
  66. Ye, D. Z. and Gao, S. X., 1979: Meteorology over the Tibetan Plateau, Scientific Press, Beijing. 48 JIANZHONG MA ET AL.Google Scholar
  67. Yu, X. Tang, J., Li, X. S., and Liang, B. S., 1997: Observation and analysis of SO2 and NO2 in clean air of western China, Quarterly J. Applied Meteorology 8, 62–68.Google Scholar
  68. Zhou, L. X., Tang, J., Zhang, X. C., Ji, J., Wang, Z. B., Worthy, D., Emst, M., and Trivett, N. 1998a: In-situ gas chromatographic measurement of atmospheric methane and carbon dioxide, Acta Scientiae Circumstantiae 18, 356–361.Google Scholar
  69. Zhou, L. X., Tang, J., Wen, Y. P., Zhang, X. C., Ji, J., Zheng, M., Worthy, D., Trivett, N., Tans, P., and Conway, T., 1998b: Characteristics of atmospheric methane concentration variation at Mt. Waliguan, Quarterly J. Applied Meteorology 9, 385–391.Google Scholar
  70. Zhou, X. J.., Luo, C., Li, W. L., and Shi, J. E., 1995: The variation of total ozone in China and unusual ozone depletion center over Tibetan Plateau, Chinese Science Bulletin 40, 1396–1398.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jianzhong Ma
    • 1
  • Jie Tang
    • 1
  • Xiuji Zhou
    • 1
  • Xiaoshan Zhang
    • 2
  1. 1.Earth Environment Science LaboratoryChinese Academy of Meteorological Sciences (CAMS)BeijingP. R. China
  2. 2.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations