Studia Logica

, Volume 69, Issue 1, pp 59–96 | Cite as

Free-Variable Tableaux for Propositional Modal Logics

  • Bernhard Beckert
  • Rajeev GorÉ

Abstract

Free-variable semantic tableaux are a well-established technique for first-order theorem proving where free variables act as a meta-linguistic device for tracking the eigenvariables used during proof search. We present the theoretical foundations to extend this technique to propositional modal logics, including non-trivial rigorous proofs of soundness and completeness, and also present various techniques that improve the efficiency of the basic naive method for such tableaux.

automated deduction modal logics modal theorem proving free-variable tableaux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Balsinger, P., and A. Heuerding, 'Comparison of theorem provers for modal logics: Introduction and summary' in Proceedings, International Conference on Theorem Proving with Analytic Tableaux and Related Methods, Oisterwijk, The Netherlands, LNCS 1397, Springer, 1998.Google Scholar
  2. [2]
    Beckert, B., and R. Goré, 'Free variable tableaux for propositional modal logics' in Proceedings, International Conference on Theorem Proving with Analytic Tableaux and Related Methods, Pont-à-Mousson, France, LNCS 1227, pages 91-106, Springer, 1997.Google Scholar
  3. [3]
    Beckert, B., and R. Goré, 'leanK 2.0:D escription for the comparison of theorem provers for modal logics' in Proceedings, International Conference on Theorem Proving with Analytic Tableaux and Related Methods, Oisterwijk, The Netherlands, LNCS 1397, pages 33-34, Springer, 1998.Google Scholar
  4. [4]
    Beckert, B., and R. Goré, 'System description: lean K 2.0' in Proceedings, 15th International Conference on Automated Deduction (CADE), Lindau, Germany, LNCS 1421, pages 51-55, Springer, 1998.Google Scholar
  5. [5]
    Beckert, B., and R. Hähnle, 'Analytic tableaux' in W. Bibel and P. H. Schmitt, editors, Automated Deduction-A Basis for Applications, volume I:Foundations, Kluwer, Dordrecht, 1998.Google Scholar
  6. [6]
    Beckert, B., R. Hähnle, P. Oel, and M. Sulzmann, 'The tableau-based theorem prover 3 T A P, version 4.0' in Proceedings, 13th International Conference on Automated Deduction (CADE), New Brunswick, NJ, USA, LNCS 1104, pages 303-307, Springer, 1996.Google Scholar
  7. [7]
    Beckert, B., and J. Posegga, 'leanT A P:Le an tableau-based deduction' Journal of Automated Reasoning 15(3):339-358, 1995.Google Scholar
  8. [8]
    Bencivenga, E., 'Free logic' in D. Gabbay and F. Günthner, editors, Handbook of Philosophical Logic, volume 3, Kluwer, Dordrecht, 1986.Google Scholar
  9. [9]
    Bonnette, N., 'K tFV: A free variable sequent system for tense logic Kt' Australian Computational Logic Workshop, February 2000.Google Scholar
  10. [10]
    D'Agostino, M., D. Gabbay, and A. Russo, 'Grafting modalities onto substructural implication systems' Studia Logica 59:65-102, 1997.Google Scholar
  11. [11]
    Fitting, M., 'leanTAP revisited' Journal of Logic and Computation 8(1):33-47, 1998.Google Scholar
  12. [12]
    Fitting, M.C., Proof Methods for Modal and Intuitionistic Logics, volume 169 of Synthese Library, D. Reidel, Dordrecht, Holland, 1983.Google Scholar
  13. [13]
    Fitting, M.C., First-Order Logic and Automated Theorem Proving, Springer, second edition, 1996.Google Scholar
  14. [14]
    Frisch, A., and R. SCHERL, 'A general framework for modal deduction' in J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings, 2nd Conference on Principles of Knowledge Representation and Reasoning, Morgan-Kaufmann, 1991.Google Scholar
  15. [15]
    Gabbay, D., Labelled Deductive Systems, Oxford University Press, 1996.Google Scholar
  16. [16]
    Goré, R., 'Tableau methods for modal and temporal logics' in M. D'Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, Kluwer, Dordrecht, 1999.Google Scholar
  17. [17]
    Governatori, G., 'A reduplication and loop checking free proof system for S4' in Short Papers: TABLEAUX'96, number 154-96 in RI-DSI, Via Comelico 39, 20135 Milan, Italy, 1996, Department of Computer Science, University of Milan.Google Scholar
  18. [18]
    Heuerding, A., M. SEYFRIED, and H. Zimmermann, 'Efficient loop-check for backward proof search in some non-classical logics' in P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings, 5th Workshop on Theorem Proving with Analytic Tableaux and Related Methods, Terrasini, Palermo, Italy, LNCS 1071, pages 210-225, Springer, 1996.Google Scholar
  19. [19]
    Jackson, P., and H. REICHGELT, 'A general proof method for first-order modal logic' in Proceedings, International Joint Conference on Artificial Intelligence (IJCAI), pages 942-944, 1987.Google Scholar
  20. [20]
    Kanger, S., Provability in Logic, Stockholm Studies in Philosophy, University of Stockholm, Almqvist and Wiksell, Sweden, 1957.Google Scholar
  21. [21]
    Letz, R., J. SCHUMANN, S. Bayerl, and W. Bibel, 'SETHEO:A high-performance theorem prover' Journal of Automated Reasoning 8(2):183-212, 1992.Google Scholar
  22. [22]
    Massacci, F., 'Strongly analytic tableaux for normal modal logics' in A. Bundy, editor, Proceedings, 12th International Conference on Automated Deduction (CADE), Nancy, France, LNCS 814, pages 723-737, Springer, 1994.Google Scholar
  23. [23]
    Massaci, F., 'Simplification:A general constraint propagation technique for propositional and modal tableaux' in Proceedings, International Conference on Theorem Proving with Analytic Tableaux and Related Methods, Oisterwijk, The Netherlands, LNCS 1397. Springer, 1998.Google Scholar
  24. [24]
    Mints, G., A Short Introduction to Modal Logic, CSLI, Stanford, 1992.Google Scholar
  25. [25]
    Otten, J., 'ileanTAP:A n intuitionistic theorem prover' in Proceedings, International Conference on Theorem Proving with Analytic Tableaux and Related Methods, Pont-à-Mousson, France, LNCS 1227, Springer, 1997.Google Scholar
  26. [26]
    Pitt, J., and J. CUNNINGHAM, 'Distributed modal theorem proving with KE' in M. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings, International Conference on Theorem Proving with Analytic Tableaux and Related Methods, Terrasini, Palermo, Italy, LNCS 1071, pages 160-176, Springer, 1996.Google Scholar
  27. [27]
    Reeves, S.V., 'Semantic tableaux as a framework for automated theorem-proving' in C. Mellish and J. Hallam, editors, Advances in Artificial Intelligence (Proceedings of AISB-87), pages 125-139, Wiley, 1987.Google Scholar
  28. [28]
    Russo, A., 'Generalising propositional modal logic using labelled deductive systems' in F. Baader and K. Schulz, editors, Proceedings, Frontiers of Combining Systems (FroCoS), Munich, Germany, volume 3 of Applied Logic Series, Kluwer, Dordrecht, 1996.Google Scholar
  29. [29]
    Wallen, L.A., Automated Deduction in Nonclassical Logics: Efficient Matrix Proof Methods for Modal and Intuitionistic Logics, MIT Press, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Bernhard Beckert
    • 1
  • Rajeev GorÉ
    • 2
  1. 1.Inst. for Logic, Complexity and Deduction SystemsUniversity of KarlsruheKarlsruheGermany
  2. 2.Automated Reasoning ProjectAustralian National UniversityCanberraAustralia

Personalised recommendations