Reading and Writing

, Volume 15, Issue 1–2, pp 179–206 | Cite as

Timing precision and rhythm in developmental dyslexia

Article

Abstract

Current research on the etiology ofdevelopmental dyslexia is generally informed byeither of two major hypotheses. One of theseassumes that the phonological processing ofconsonants and vowels at a segmental levelidentifies the core deficit in developmentaldyslexia and that it cannot be reduced todomain-general deficits of temporal informationprocessing. The other hypothesis holds thatphonological processing deficits aresymptomatic of an underlying, domain-generaldysfunction; and that at least some dyslexiasubtypes are causally related to domain generaldeficits of temporal information processing forauditory and visual stimuli. This report startsfrom the assumption that the terms temporal information processing andphonological processing as applied in currentdyslexia research, are frequently conflated. Further, it assumes that the conflated termsmust be decomposed into their concretebehavioral referents before the causalsignificance of either can be investigatedsystematically.

The studies to be summarized in thisreport represents one step toward suchdecomposition. The findings indicated thatduring a motor sequencing task, dyslexicstudents anticipated the signal of anisochronic pacing metronome by intervals thatwere two or three times as long as those ofage matched normal readers or normal adults.These group differences were significant whenparticipants tapped with the preferred indexfinger alone or with both fingers in unison.Dyslexic students also took significantlylonger than normal readers did to recalibratetheir tapping responses when the metronome ratewas experimentally changed in the middle of atrial.

In addition, dyslexic students, bycontrast to normal readers, had inordinatedifficulty reproducing simple motor rhythms byfinger tapping, and similar difficultyreproducing the appropriate speech rhythm oflinguistically neutral nonsense syllables.These difficulties were exaggerated whenparticipants had to synchronize theirperformance to an external pacing metronome.The implications of the findings for temporalinformation processing deficits on one hand,and impaired phonological processing on theother, are discussed.

Developmental dyslexia Rhythm Segmental phonology Temporal information processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G.D. (1975). Speech rhythm: Its relation to performance universals and articulatory timing, Journal of Phonetics 3: 75-86.Google Scholar
  2. Annett, M. (1970). A classification of hand preference by association analysis, British Journal of Psychology 61: 303-321.Google Scholar
  3. Bowers, P.G. & Wolf, M. (1995). Theoretical links among naming speed, precise timing mechanisms and orthographic skills, Reading and Writing: An Interdisciplinary Journal 5: 69-85.Google Scholar
  4. Bruck, M. (1989). Outcomes of adults with childhood histories of dyslexia. In: C. Hulme & R.M. Joshi (eds.), Reading and spelling developmental disorders (pp. 179-200). Mahwa, NJ: Erlbaum.Google Scholar
  5. Byrd, B. & Saltzman, E. (1998). Intrasegmental dynamics of multiple prosodic boundaries, Journal of Phonetics 23: 173-199.Google Scholar
  6. Byrne, B. & Fielding-Barnsley, R. (1995). Evaluation of a program to teach phonemic awareness to young children: A 2-3-year follow-up and a new pre-school trial, Journal of Educational Psychology 87: 488-503.Google Scholar
  7. Castiello, U., Paulignan, P. & Jeannerod, M. (1991). Temporal dissociation of motor responses and subjective awareness, Brain 114: 2639-2355.Google Scholar
  8. Chang, P. & Hammond, G.R. (1987). Mutual interaction between speech and finger movements, Journal of Motor Behavior 19: 265-271.Google Scholar
  9. Denckla, M.B. (1993). A neurologist's overview of developmental dyslexia, Annals of the New York Academy of Sciences 682: 23-26.Google Scholar
  10. Denckla, M.B. & Rudel, R.G. (1976). Rapid 'automatized' naming of pictured objects colors, letters and numbers, Cortex 10: 186-202.Google Scholar
  11. Enders, K.C., Flanders,M. & Soechting J.F. (1996). Anticipatory and sequential motor control in piano playing, Experimental Brain Research 113: 189-199.Google Scholar
  12. Engstroem, D.A., Kelso, J.A.S. & Holroyd, T. (1996). Reaction-anticipation transitions In human perception-action systems, Journal of Movement Science 15: 809-832.Google Scholar
  13. Farmer, M.E. & Klein, R.M. (1995). The evidence for temporal processing deficits linked to dyslexia: A review, Psychonomic Bulletin and Review 2: 460-493.Google Scholar
  14. Fourneret, P & Jeannerod, M. (1998). Limited conscious monitoring of motor performance in normal subjects, Neuropsychologia 36: 1133-1140.Google Scholar
  15. Fowler, C. (1996). Speaking. In: H. Heuer & S.W. Keele (eds.), Handbook of action, Vol. 2: Motor skills (pp. 503-560). London: Academic Press.Google Scholar
  16. Fraisse, P. (1982). Rhythm and tempo. In: D. Deutsch (ed.), The psychology of music (pp. 148-190). New York: Academic Press.Google Scholar
  17. Gerken, L-A. & McGregor, K. (1998). An overview of prosody and its role in normal and child language, American Journal of Speech-Language Pathology 7: 36-48.Google Scholar
  18. Hanes, M.L. (1982). Rhythm as a factor of mediated and non-mediated (automatic) processing in reading. In: J.R. Evans & J.R. Clynes (eds.), Rhythm: Psychological, linguistic and musical processes (pp. 99-130). Springfield, IL: C.C. Thomas.Google Scholar
  19. Hary, D. & Moore, G.P. (1987). Synchronizing human movement with an external clock source, Biological Cybernetics 56: 305-311.Google Scholar
  20. Ivry, R.B. (1996). The representation of temporal information in perception and motor Control, Current Opinions in Neurobiology 6: 851-857.Google Scholar
  21. Keller, E., Vigneux, P. & La Framboise, M. (1991). Acoustic analysis of neurologically Impaired speech, British Journal of Disorders of Communication 26: 75-94.Google Scholar
  22. Kelso, J.A.S & Tuller, B. (1984). Converging evidence in support of common dynamic principles for speech and movement coordination, American Journal of Physiology 246: R928-R935.Google Scholar
  23. Kimura, D. & Archibald, Y. (1974).Motor function of the left hemisphere, Brain 97: 337-359.Google Scholar
  24. Lashley, K.S. (1951). The problem of serial order in behavior. In: L.A. Jeffries (ed.), Cerebral mechanisms in behavior (pp. 112-136). New York: Wiley.Google Scholar
  25. Lenneberg, E. (1967). Biological foundations of language. New York: Wiley.Google Scholar
  26. Liberman, A. (1993). In speech perception, timing is not what it seems, Annals of the New York Academy of Sciences 682: 264-271.Google Scholar
  27. Liberman, M. & Prince, A. (1977). On stress and linguistic rhythm, Linguistic Inquiry 8: 249-336.Google Scholar
  28. Liberman, I.Y. & Shankweiler, D. (1991). Phonology and beginning to read. In: L. Rieben & A. Perfetti (eds.), Learning to read (pp. 3-17). Hillsdale, NJ: Erlbaum.Google Scholar
  29. Lieberman, P. (1999). Human language and our reptilian brain. Cambridge, MA: Harvard University Press.Google Scholar
  30. Llinas, R. (1993). Is dyslexia a dyschronia?, Annals of the New York Academy of Sciences 682: 48-56.Google Scholar
  31. Lock, J. (1983). Phonological acquisition and change. New York: Academic Press.Google Scholar
  32. Lovegrove, W. (1993). Weakness in the transient visual system: A causal factor in dyslexia?, Annals of the New York Academy of Sciences 682: 57-69.Google Scholar
  33. MacNeilage P.F. & Davis, B. (1990). Acquisition of speech production: Frames then content. In: M. Jeannerod (ed.), Attention and performance, Vol. 13: Motor representations and control (pp. 453-476). Hillsdale, NJ: Erlbaum.Google Scholar
  34. MacNeilage, P., Studdert-Kennedy, M.G. & Lindbloom, B. (1984). Functional precursors of language and its lateralization, American Journal of Physiology, 246: R912-R914.Google Scholar
  35. Martin, J.G. (1972). Rhythmic (hierarchical) versus serial structuring in speech and other behavior, Psychological Review 79: 487-509.Google Scholar
  36. Moody, M., Studdert-Kennedy, M.G. & Brady, S. (1997). Speech perception in poor readers: Auditory processing or phonological coding?, Journal of Experimental Child Psychology 64: 199-231.Google Scholar
  37. Ojemann, G. (1984). Common cortical and thalamic mechanisms for language and motor Function, American Journal of Physiology 246: R901-R903.Google Scholar
  38. Panagos, J.M. & Prelock, P.A. (1997). Prosodic analysis of child speech, Topics in Language Disorders 17(4): 1-10.Google Scholar
  39. Poeppel, E., Ruhnau, E., Schill, K. & Steinbuechel, N.V. (1990). A hypothesis concerning timing in the brain. In: H. Haken & M. Stadler (eds.), Synergetics of cognition (pp. 144-149). Berlin: Springer.Google Scholar
  40. Radilova, K., Novak, A., Vokral, J., Radil, T., Virsu, V. & Reinikainen, K. (1997). Synchronization of vocalizations and of finger tapping with rhythmic stimuli, Homeostasis 38: 127-128.Google Scholar
  41. Requin, J. (1980). La preparation a l'activite motrice: vers une convergence des problematiques psychologique et neurobiolgique. In: J. Requin (ed.), Anticipation et comportemen (pp. 261-332). Paris: CNRS.Google Scholar
  42. Rosen, R. (1985). Anticipatory systems. London: Pergamon.Google Scholar
  43. Schwartz, R.G. (1992). Nonlinear phonology as a framework for phonological acquisition. In: R. Chaman (ed.), Processes in language acquisition and and disorders (pp. 108-124). Chicago, IL: Mosby Year Books.Google Scholar
  44. Shaffer, L.H. (1982). Rhythm and timing in skill, Psychological Review 89: 109-122.Google Scholar
  45. Shriberg, L.D., Aram, D.M. & Kwiatkowski, J. (1997). Developmental apraxia of speech, III: A subtype marked by inappropriate stress, Journal of Speech, Language and Hearing Research 40: 313-327.Google Scholar
  46. Siegel, S. (1956). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.Google Scholar
  47. Sperry, R.W. (1951). Neurology and the mind/brain problem, American Scientist 40: 291-312.Google Scholar
  48. Stamback, M. (962). Le problem du rhythm dans le developpement de l'enfant et dans les dyslexies d'evolution, Enfance 36: 481-502.Google Scholar
  49. Stanovich, K.E. & Siegel, L.S. (1994). Phenotypic performance profile of children with reading disabilities, Journal of Educational Psychology 86: 24-53.Google Scholar
  50. Steinhauer, K., Alter, K. & Friederici, A.D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing, Nature Neuroscience 2: 191-196.Google Scholar
  51. Studdert-Kennedy, M.G. & Moody, M. (1995). Auditory temporal processing deficits in the reading-impaired: A critical review of the evidence, Psychonomic Bulletin and Review 2: 508-514.Google Scholar
  52. Tallal, P., Miller, S. & Fitch, R.S. (1993). Neurobiological basis of speech: A case for the preeminence of temporal processing. Annals of the New York Academy of Sciences 682: 27-47.Google Scholar
  53. Tzeng, O.J. & Wang, W. S-Y. (1984). Search for a coming neurocognitive mechanism for language and movements, American Journal of Psychology 246: R904-R911.Google Scholar
  54. Weinert, S. (1992). Deficits in acquiring language structure: The importance of using prosodic cues, Applied Cognitive Psychology 6: 545-571.Google Scholar
  55. Wise, B.W., Olson, R.K., Ring, J. & Johnson, M. (1998). Interactive computer support for improving phonological skills. In: J.L. Metsala & L.C. Ehri (eds.), Word recognition in beginning literacy (pp. 189-208). Mahwah, NJ: Erlbaum.Google Scholar
  56. Wolff, P.H. (1993). Impaired temporal resolution in developmental dyslexia, Annals of the New York Academy of Sciences 682: 87-103.Google Scholar
  57. Wolff, P.H. & Melngailis, I. (1994). Family patterns of developmental dyslexia: Clinical findings, American Journal of Medical Genetics 54: 122-131.Google Scholar
  58. Wolff, P.H., Melngailis, I., Obregon, M. & Bedrosian, M. (1995). Family patterns of developmental dyslexia, Part II: Behavioral phenotypes, American Journal of Medical Genetics 60: 494-505.Google Scholar
  59. Wolff, P.H., Melngailis, I. & Kotwica, K. (1996). Family patterns of developmental dyslexia, Part III: Spelling errors as behavioral phenotype, American Journal of Medical Genetics 67: 378-386.Google Scholar
  60. Wolff, P.H., Michel, G.F., Ovrut, M. & Drake, C. (1990). Rate and timing precision of motor coordination in developmental dyslexia, Developmental Psychology 26: 349-359.Google Scholar
  61. Wolff, P.H., Michel, G.F. & Ovrut, M. (1990). The timing of syllable repetitions in developmental dyslexia, Journal Speech and Hearing Research 33: 281-289.Google Scholar
  62. Wolff, P.H., Michel, G.F. & Ovrut, M. (1990). Rate variables and automatized naming in developmental dyslexia, Brain and Language 39: 556-575.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Children's Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations