Advertisement

Journal of Low Temperature Physics

, Volume 126, Issue 3–4, pp 1165–1183 | Cite as

Two-Hole Dynamics in Spin Ladders

  • Christoph Jurecka
  • Wolfram Brenig
Article

Abstract

We present an analytic theory for the energy spectrum of a two-leg spin ladder doped with two holes. Starting from a pseudo-fermion-bond-boson representation of the corresponding t 1,2 −J 1,2 Hamiltonian we apply a diagrammtic approach adapted to the limit of strong rung coupling, which includes both, the coupling of holes to the spin background as well as the two-hole interactions. The two-hole spectrum is calculated and the formation of bound states is discussed. Additionally the evolution of the spin gap of the ladder upon doping is analyzed. A comparison with existing exact diagonalization data is presented and good agreement is found.

Keywords

Energy Spectrum Magnetic Material Analytic Theory Exact Diagonalization Spin Ladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    For reviews see: E. Dagotto and T. M. Rice, Science 271, 618 (1996); M. Takano, Physica C 263, 468 (1996); S. Maekawa, Science 273, 1515 (1996); T. M. Rice, Z. Phys. B 103, 165 (1997); H. Tsunetsugu, Physica B 237–238, 108 (1997). E. Dagotto, cond-mat/9908250;Rep. Prog. Phys. 62, 1525 (1999).Google Scholar
  2. 2.
    Z. Hiroi, M. Azuma, M. Takano and Y. Bando, J. Solid State Chem. 95, 230 (1991); M. Azuma, Z. Hiroi, M. Takano, K. Ishida and Y. Kitaoka, Phys. Rev. Lett. 73, 3463 (1994).Google Scholar
  3. 3.
    H. Iwase, M. Isobe, Y. Ueda and H. Yasuoka, J. Phys. Soc. Jpn. 65 2397 (1996).Google Scholar
  4. 4.
    M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mori, and K. Kinoshita, J. Phys. Soc. Jpn. 65, 2764 (1996).Google Scholar
  5. 5.
    E.M. McCarron, M.A. Subramanian, J.C. Calabrese, und R.L. Harlow, Mater. Res. Bul. 23, 1355 (1988)Google Scholar
  6. 6.
    H. Tsunetsugu, M. Troyer, T. M. Rice, Phys. Rev. B 49, 16078 (1994).Google Scholar
  7. 7.
    H. Tsunetsugu, M. Troyer, and T. M. Rice, Phys. Rev. B 51, 16456 (1995).Google Scholar
  8. 8.
    M. Troyer, H. Tsunetsugu, T. M. Rice, Phys. Rev. B 53, 251 (1996).Google Scholar
  9. 9.
    S. Haas and E. Dagotto, Phys. Rev. B 54, R3718 (1996).Google Scholar
  10. 10.
    S. R. White, D. J. Scalapino, Phys. Rev. B 55, 6504 (1997).Google Scholar
  11. 11.
    M. Brunner, S. Capponi, F. F. Assaad, A. Muramatsu, Phys. Rev. B 63, 180511(R) (2001).Google Scholar
  12. 12.
    R. Eder, Phys. Rev. B 57, 12832 (1998).Google Scholar
  13. 13.
    O. P. Sushkov, Phys. Rev. B 60, 3289 (1999).Google Scholar
  14. 14.
    C. Jurecka, W. Brenig, Phys. Rev. B 63, 094409 (2001).Google Scholar
  15. 15.
    E. Dagotto, J. Riera, D. Scalapino, Phys. Rev. B 45, 5744 (1992).Google Scholar
  16. 16.
    C. Gazza, G. B. Martins, J. Riera, E. Dagotto, Phys. Rev. B 59, 709 (1999).Google Scholar
  17. 17.
    T. Siller, M. Troyer, T. M. Rice, S. R. White, Phys. Rev. B 63, 195106 (2001).Google Scholar
  18. 18.
    T. F. A. Müller, T. M. Rice, Phys. Rev. B 58, 3425 (1998).Google Scholar
  19. 19.
    S. Rommer, S. R. White, D. J. Scalapino, Phys. Rev. B 61, 13424 (2000).Google Scholar
  20. 20.
    D. Poilblanc, D. J. Scalapino, W. Hanke, Phys. Rev. B 52, 6796 (1995).Google Scholar
  21. 21.
    E. Dagotto, G. B. Martins, J. Riera, A. L. Malvezzi, C. Gazza, Phys. Rev. B 58, 12063 (1998).Google Scholar
  22. 22.
    J. Riera, D. Poilblanc, E. Dagotto, Eur. Phys. J. B 7, 53 (1999).Google Scholar
  23. 23.
    D. Poilblanc, O. Chiappa, J. Riera, S. R. White, D. J. Scalapino, Phys. Rev. B 62, R14633 (2000).Google Scholar
  24. 24.
    K. Tsutsui, D. Poilblanc, S. Capponi, cond-mat/0106389.Google Scholar
  25. 25.
    C. A. Hayward, D. Poilblanc, R. M. Noack, D. J. Scalapino, W. Hanke, Phys. Rev. Lett. 75, 926 (1995).Google Scholar
  26. 26.
    C. A. Hayward, D. Poilblanc, Phys. Rev. B 53, 11721 (1996).Google Scholar
  27. 27.
    J. Oitmaa, C. J. Hamer, Z. Weihong, Phys. Rev. B 60, 16364 (1999).Google Scholar
  28. 28.
    M. Sigrist, T. M. Rice, F. C. Zhang, Phys. Rev. B 49, 12058 (1994).Google Scholar
  29. 29.
    Y. L. Lee, Y. W. Lee, C.-Y. Mou, Z. Y. Weng, Phys. Rev. B 60, 13418 (1999).Google Scholar
  30. 30.
    A. Läuchli, Diploma thesis, ETH Zürich (1999).Google Scholar
  31. 31.
    H. Lin, L. Balents, M. P. A. Fisher, Phys. Rev. B 58, 1794 (1998).Google Scholar
  32. 32.
    I. Bose and S. Gayen, J. Phys.: Condens. Matter 11, 6427 (1999).Google Scholar
  33. 33.
    H. Frahm, A. Kundu, J. Phys.: Condens. Matter 11, 557 (1999).Google Scholar
  34. 34.
    G. Sierra, M. A. Martin-Delgado, J. Dukelsky, S. R. White, D. J. Scalapino, Phys. Rev. B 57, 11666 (1998).Google Scholar
  35. 35.
    S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 (1990).Google Scholar
  36. 36.
    A. V. Chubukov, Pis'ma Zh. Eksp. Teor. bf 49, 108 (1989); JETP Lett. 49, 129 (1989).Google Scholar
  37. 37.
    A. V. Chubukov and Th. Jolicoeur, Phys. Rev. B 44, 12050 (1991).Google Scholar
  38. 38.
    O. A. Starykh, M. E. Zhitomirsky, D. I. Khomskii, R. R. P. Singh, and K. Ueda, Phys. Rev. Lett. 77, 2558 (1996).Google Scholar
  39. 39.
    W. Brenig, Phys. Rev. B 56, 14441 (1997).Google Scholar
  40. 40.
    T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Phys. Rev. B 47, 3196 (1993).Google Scholar
  41. 41.
    M. Reigrotzki, H. Tsunetsugu, and T. M. Rice, J. Phys.: Condens. Matter 6, 9235 (1994).Google Scholar
  42. 42.
    C. Jurecka and W. Brenig Phys. Rev. B 61, 14307 (2000).Google Scholar
  43. 43.
    Very recently Park and Sachdev used this representation for a mean-field theory of two-dimensional antiferromagnets and spin ladders at finite doping. K. Park, S. Sachdev, cond-mat/0104519 (2001).Google Scholar
  44. 44.
    O.P. Sushkov and V.N. Kotov Phys. Rev. Lett. 81, 1941 (1998).Google Scholar
  45. 45.
    V. N. Kotov, O. P. Sushkov, Z. Weihong, and J. Oitmaa, Phys. Rev. Lett. 80, 5790 (1998).Google Scholar
  46. 46.
    V. N. Kotov, O. P. Sushkov, and R. Eder, Phys. Rev. B 59, 6266 (1999).Google Scholar
  47. 47.
    C. Jurecka, V. Grützun, A. Friedrich, W. Brenig, Eur. Phys. J. B 21, 469 (2001).Google Scholar
  48. 48.
    S. Schmitt-Rink and C.M. Varma, Phys. Rev. Lett. 60, 2793 (1988).Google Scholar
  49. 49.
    C. L. Kane, P. A. Lee, N. Read, Phys. Rev. B 39, 6880 (1989).Google Scholar
  50. 50.
    G. Martinez, P. Horsch, Phys. Rev. B 44, 317 (1991).Google Scholar
  51. 51.
    Z. Liu, E. Manousakis, Phys. Rev. B 45, 2425 (1992).Google Scholar
  52. 52.
    S. Gopalan, T. M. Rice, M. Sigrist, Phys. Rev. B 49, 8901 (1994).Google Scholar
  53. 53.
    A. Luther and V.J. Emery, Phys. Rev. Lett. 33, 589 (1974); V.J. Emery, in Highly Conducting One-Dimensional Solids, edited by J.T. Devreese et al. (Plenum, New York, 1979).Google Scholar
  54. 54.
    F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980); J. Phys. C 14, 2585 (1981).Google Scholar
  55. 55.
    M. Greven, R. J. Birgeneau, and U.-J. Wiese, Phys. Rev. Lett. 77, 1865 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations