Plant Growth Regulation

, Volume 35, Issue 1, pp 59–67 | Cite as

Direct shoot regeneration from cotyledonary nodes as a marker for genomic groupings within the Asiatic Vigna (subgenus Ceratotropis {Piper} Verdc.) species

  • Renato Avenido
  • Jo Motoda
  • Kazumi Hattori


In vitro culture of cotyledonary node (cn)explants, decapitated and intact seedlings of four different AsiaticVigna species (germinated and subcultured in MS-B5 mediumwith 1.0 mg l−1 BA) resulted in axillaryshoot formation only from the epigeal V. radiata and thehypogeal but allotetraploid V. glabrescens. The hypogealspecies V. angularis and V. umbellatafailed to exhibit this response. Shoot decapitation invivopromoted similar response only in V. radiata, indicatingthat in vitro culture in BA-supplemented medium isrequiredby V. glabrescens to achieve the same response.Histological observations of the cn explants from 4-d-oldin-vitro-germinated seedlings at d 0(inoculation day), d 4 and d 8 (after inoculation) revealed the formation ofprimary axillary shoots (pas) in both V. radiata andV. glabrescens. Secondary axillary branching at the baseofthe pas was observed at 8 d. Further examination by scanningelectron microscope (SEM) confirmed the presence of shoot buds enveloped by atleast two leaf primordia in the explants at d 0 in all epigeal species namelyV. radiata, V. mungo and V.aconitifolia together with the hypogeal but allotetraploidV. glabrescens. Consistently, these structures were absentin V. angularis and V. umbellata.Present histological and SEM observations support the previous findings ofAvenido and Hattori (Plant Cell Tissue Organ Cult, 1999) that the induction ornon-induction of shoots directly from the nodes of invitro-cultured cn explants is a new marker corresponding to thegenomic grouping within the Asiatic Vigna species. Basedonhybridization studies, Dana (Breeding Methods for Improvement of Crops, 1980)designates AA, A1A1 and A1A1/- toall epigeal, hypogeal and the hypogeal but allotetraploid AsiaticVigna species, respectively. Moreover, these findingsproved that the differential in vitro regenerationresponse(i.e., response to BA) arises from inherent anatomical and developmentaldifferences, and is supportive of the genomic grouping within subgenusCeratotropis of the genus vigna.

Axillary shoot BA Genus Vigna Species relationships Taxonomy Tissue culture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avenido R.A. and Hautea D.M. 1990. In vitro organogenesis and flowering in mungbean (V. radiata L. Wilczek). Philipp J. Crop Sci. 15: 169–173.Google Scholar
  2. Avenido R.A., Hautea D.M., Mendoza C.J. and Carandang S.L. 1991. Clonal propagation of F1 hybrids of mungbean (Vigna radiata L. Wilczek) x blackgram (V. mungo L. Hepper) by tissue culture. Philipp J. Crop Sci. 16: 63–67.Google Scholar
  3. Avenido R.A. and Hattori K. 1999. Differences in regeneration response from cotyledonary node explants in Asiatic Vigna species support genomic grouping within subgenus Ceratotropis {Piper} Verdc. Plant Cell Tissue Organ Cult. 58: 99–110.Google Scholar
  4. Avenido R.A. and Hattori K. 2000. Benzyladenine-induced adventitious shoot regeneration from hypocotyls of adzukibean (Vigna angularis Ohwi & Ohashi). Plant Growth Reg. 31: 147–153.Google Scholar
  5. Chen N.C., Baker L.R. and Honma S. 1983. Interspecific crossability among four species of Vigna food legumes. Euphytica. 32: 925–937.Google Scholar
  6. Dana S. 1965. Hybrid between tetraploid Phaseolus sp. and P. calcaratus. Biol. Plant. 71: 7–12.Google Scholar
  7. Dana S. 1980. Genomic relationship in the genus Vigna and its implications in the breeding programme. In: Gill K.S. (ed.), Breeding Methods for the Improvement of Pulse Crops. Punjab Agric Univ, Ludhiana, India, pp. 357–367.Google Scholar
  8. Dana S. and Karmakar P.G. 1990. Species relation in Vigna subgenus Ceratotropis and its implication in breeding. In: Janick J. (ed.), Plant Breed. Rev., pp. 19–42.Google Scholar
  9. Egawa Y. 1988. Phylogenetic differentiation between three Asian Vigna species, V. radiata, V. mungo and V. umbellata. Bull. Natl. Inst. Agrobiol. Resour. Tsukuba, Japan. 4: 189–200.Google Scholar
  10. Fatokun C.A., Danesh D., Young N.D. and Stewart E.L. 1993. Molecular and taxonomic relationships in the genus Vigna based on RFLP analysis. Theor. Appl. Genet. 86: 97–104.Google Scholar
  11. Franklin C.I., Trieu T.N., Gonzales R.A. and Dixon R.A. 1991. Plant regeneration from seedling explants of green bean (Phaseolus vulgaris L.) via organogenesis. Plant Cell Tissue Organ Cult. 24: 199–206.Google Scholar
  12. Gamborg O.L., Miller R.A. and Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cell. Exp. Cell Res. 50: 151–158.Google Scholar
  13. Geetha N., Venkatachalam P. and Rao G.R. 1997. In vitro plant regeneration from different seedling explants of blackgram (V. mungo L. Hepper) via organogenesis. Breed Sci. 47: 311–315.Google Scholar
  14. George L. and Eapen S. 1994. Organogenesis and embryogenesis from diverse explants in pigeonpea (Cajanus cajan L.). Plant Cell Rep. 13: 417–420.Google Scholar
  15. Gulati A. and Jaiwal P.K. 1990. Culture conditions effecting plant regeneration from cotyledons of Vigna radiata L. Wilczek. Plant Cell Tissue Organ Cult. 23: 1–7.Google Scholar
  16. Gulati A. and Jaiwal P.K. 1992. In vitro induction of multiple shoots and plant regeneration from shoot tips of mungbean (Vigna radiata L. Wilczek). Plant Cell Tissue Organ. Cult. 29: 199–205.Google Scholar
  17. Gulati A. and Jaiwal P.K. 1993. In vitro selection of salt-resistant Vigna radiata (L.) Wilczek plants by adventitious shoot formation from cultured cotyledon explants. J. Plant Physiol. 142: 99–102.Google Scholar
  18. Gulati A. and Jaiwal P.K. 1994. Plant regeneration from cotyledonary nodes of mungbean (Vigna radiata L. Wilczek). Plant Cell Rep. 13: 523–527.Google Scholar
  19. Ignamuthu S., Franklin G. and Melchias G. 1997. Multiple shoot formation and in vitro fruiting from cotyledonary nodes of Vigna mungo L. Hepper. Curr. Sci. 73: 733–735.Google Scholar
  20. Jaaska V. and Jaaska V. 1990. Isoenzyme variation in Asian beans. Bot. Acta. 103: 281–290.Google Scholar
  21. Jackson J.A. and Hobbs S.L.A. 1990. Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.). In Vitro Cell Dev. Biol. 26: 835–838.Google Scholar
  22. Kaga A., Tomooka N., Egawa Y., Hosaka K. and Kamijima O. 1996. Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica. 88: 17–24.Google Scholar
  23. Khalafalla M.M. and Hattori K. 1999. A combination of thidiazuron and benzyladenine promotes multiple shoot production from cotyledonary node explants of faba bean (Vicia faba L.). Plant Growth Reg. 27: 145–148.Google Scholar
  24. Krishnan R. and De D.N. 1968. Cytological studies in Phaseolus, I. Autotetraploid Phaseolus aureus x a tetraploid species of Phaseolus and the backcrosses. Indian J. Genet. Plant Breed. 28: 12–22.Google Scholar
  25. Maekawa F. 1955. Topo-morphological and taxonomical studies in Phaseoleae, Leguminosae. Jap. J. Bot. 15: 103–116.Google Scholar
  26. Malik K.A. and Saxena P.K. 1992. Somatic embryogenesis and shoot regeneration from intact seedlings of Phaseolus acutifolius A., P. aureus L. Wilczek, P. coccineus L. and P. wrightii L. Plant Cell Rep. 11: 163–168.Google Scholar
  27. Marechal R., Mascherpa J.M. and Stainer F. 1978. Etude taxonomique d'un groupe complexe d'especes des genres Phaseolus et Vigna (Papillionaceae) sur la base des donnees morphologiques et polliniques traitees par l'analyze informatique. Boissiera. 28: 1–273.Google Scholar
  28. McClean P. and Grafton F. 1989. Regeneration of dry bean (Phaseolus vulgaris L.) via organogenesis. Plant Sci. 60: 117–122.Google Scholar
  29. Mendoza A.B., Hattori K., Nishimura T. and Futsuhara Y. 1993. Histological and scanning elecron microscopic observations on plant regeneration in mungbean cotyledon (Vigna radiata L. Wilczek) cultured in vitro. Plant Cell Tissue Organ. Cult. 32: 137–143.Google Scholar
  30. Moda-Cirino V., Nicolodi C., Chichiricco G. and Mariotti D. 1995. In vitro meristematic organogenesis and plant regeneration in bean (Phaseolus vulgaris L.) cultivars. J. Genet. Breed. 49: 133–138.Google Scholar
  31. Murashige T. and Skoog S. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497.Google Scholar
  32. Saluja S. and Sawhney S. 1996. Seedling growth characteristics of pulses. 1. Effect of organ excision on vegetative growth and growth correlations. Indian J. Plant Physiol. 1: 262–265.Google Scholar
  33. Sharma L. and Amla D.V. 1998. Direct shoot regeneration in chickpea Cicer arietinum L. Indian J. Exp. Biol. 36: 605–609.Google Scholar
  34. Shiva Prakash N., Pental D. and Bhalla-Sarin N. 1994. Regeneration of pigeonpea (Cajanus cajan) from cotyledonary node via multiple shoot formation. Plant Cell Rep. 13: 623–627.Google Scholar
  35. Smartt J. 1985. Evolution of grain legumes, III. Pulses in the genus Vigna. Exp. Agric. 21: 87–100.Google Scholar
  36. Smartt J. 1990. Evolution and genetic resources. In: Smartt J. (ed.), Grain Legumes. Cambridge University Press, Cambridge, pp. 140–175.Google Scholar
  37. Swindell R.E., Watt E.E. and Evans G.M. 1973. A natural tetraploid mungbean of suspected amphidiploid origin. J. Hered. 64: 107.Google Scholar
  38. Wright M.S., Koehler S.M., Hinchee M.A. and Carnes M.G. 1986. Plant regeneration by organogenesis in Glycine max. Plant Cell Rep. 5: 150–154.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Renato Avenido
    • 1
  • Jo Motoda
    • 1
  • Kazumi Hattori
    • 1
  1. 1.Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural SciencesNagoya UniversityChikusaJapan

Personalised recommendations