Topics in Catalysis

, Volume 18, Issue 3–4, pp 157–166 | Cite as

Active Sites in Heterogeneous Catalysis: Development of Molecular Concepts and Future Challenges

  • G.A. Somorjai
  • K.R. McCrea
  • J. Zhu
Article

Abstract

The concept that catalytic turnover occurs at a small fraction of the surface sites dates back to the 1920s. The application of modern surface science techniques and model catalysts confirmed the presence of active sites and identified their structures in some cases. Low coordination defect sites on transition metals, steps and kinks, or open “rough” crystal faces that make high coordination metal sites available have been uniquely active for breaking H–H, C–H, C–C, C=O, O=O and N≡N bonds. Oxide–metal interfaces provide highly active sites for reactions of C–H and C=O bonds. Electron acceptor and proton donor sites are implicated in hydrocarbon conversion (acid–base catalysis), and sites where metal ion–carbon bonds can form are active for polymerization. The observations of dynamic restructuring of catalytic surfaces upon adsorption of reactants indicate that many catalytic sites are created during the chemical reaction. Similar restructuring is detected for enzyme catalysts. The high mobility of both surface metal atoms and adsorbed molecules during the catalytic process observed recently bring into focus the dynamic nature of active sites that may have a finite lifetime as they form and disassemble. The development of techniques that provide improved time resolution and spatial resolution, and can be employed under catalytic reaction conditions will provide information about the time dependent changes of active site structure and molecular intermediates at these active sites as the reaction products form.

concepts in catalysis active sites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.S. Taylor, Proc. Roy. Soc. A 108 (1925) 105.Google Scholar
  2. [2]
    J.A. Osborne, F.H. Jardine, J.F. Young and Wilkinson, Chem. Commun. 17 (1965) 131.Google Scholar
  3. [3]
    S.L. Bernasek, W.J. Siekhaus and G.A. Somorjai, Phys. Rev. Lett. 30 (1973) 1202.Google Scholar
  4. [4]
    S.L. Bernasek and G.A. Somorjai, J. Chem. Phys. 62 (1975) 3149.Google Scholar
  5. [5]
    G.A. Somorjai, M. Salmeron and R.J. Gale, J. Chem. Phys. 2807 (1979) 70.Google Scholar
  6. [6]
    R.J. Gale, M. Salmeron and G.A. Somorjai, Phys. Rev. Lett. 48 (1977) 1027.Google Scholar
  7. [7]
    R.J. Gale, M. Salmeron and G.A. Somorjai, J. Chem. Phys. 67 (1977) 5324.Google Scholar
  8. [8]
    B.C. Stipe, M.A. Rezaei, W. Ho, S. Gao, M. Persson and B.I. Lundqvist, Phys. Rev. Lett. 78 23 (1997) 4410.Google Scholar
  9. [9]
    R.K. Grasselli and J.D. Burrington, Adv. Catal. 30 (1981) 133.Google Scholar
  10. [10]
    P. Biloen, F.M. Dantzenberg and W.M.H. Sachtler, J. Catal. 50 (1977) 77.Google Scholar
  11. [11]
    D.W. Blakely and G.A. Somorjai, J. Catal. 42 (1976) 181.Google Scholar
  12. [12]
    D.W. Blakely and G.A. Somorjai, Nature 258 (1975) 580.Google Scholar
  13. [13]
    S.M. Davis and G.A. Somorjai, Surf. Sci. 91 (1980) 73.Google Scholar
  14. [14]
    S.M. Davis, F. Zaera and G.A. Somorjai, J. Am. Chem. Soc. 104 (1982) 7453.Google Scholar
  15. [15]
    C.N.R. Rao and G. Ranga, Surf. Sci. Rep. 13 (1991) 221, and references therein.Google Scholar
  16. [16]
    A. Ozaki and K. Aika, in: Catalysis: Science and Technology,Vol.1, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1981).Google Scholar
  17. [17]
    D.R. Strongin, J. Carraza, S.R. Bare and G.A. Somorjai, J. Catal. 103 (1987) 213.Google Scholar
  18. [18]
    J.A. Dumesic, H. Topsøe and M. Boudart, J. Catal. 37 (1975) 513.Google Scholar
  19. [19]
    N.D. Spencer, R.C. Schoonmaker and G.A. Somorjai, J. Catal. 74 (1982) 129.Google Scholar
  20. [20]
    G.A. Somorjai and Y. Borodko, Catal. Lett. 59 (1999) 89.Google Scholar
  21. [21]
    H. Beinert, R.H. Holm and E. Munck, Science 277 (1997) 653.Google Scholar
  22. [22]
    M.C. Kennedy, T.A. Kent, M. Emptage, H. Merklet, H. Beinert and E. Munck, J. Biol. Chem. 259 (1984) 14463.Google Scholar
  23. [23]
    J.B. Howard and D.C. Rees, Chem. Rev. 96 (1996) 2965.Google Scholar
  24. [24]
    J. Kim and D.C. Rees, Nature 360 (1992) 553.Google Scholar
  25. [25]
    J.T. Bolin, A.E. Ronco, T.V. Morgan, L.E. Martenson and N.H. Xuong, Proc. Natl. Acad. Sci. 98 (1993) 1078.Google Scholar
  26. [26]
    D.E. Eastman, J.E. Demuth and J.M. Baker, J. Vac. Sci. Technol. 11 (1974) 273.Google Scholar
  27. [27]
    W. Erley and H. Wagner, Surf. Sci. 74 (1978) 333.Google Scholar
  28. [28]
    I. Murayama, I. Kojima, E. Miyazaki and I. Yasumori, Surf. Sci. 118 (1982) L28.Google Scholar
  29. [29]
    R. Rosel, F. Ciccacci, R. Memeo, C. Mariani, L.S. Caputi and L. Papagno, J. Catal. 83 (1983) 19.Google Scholar
  30. [30]
    C. Astaldi, A. Santoni, F. Della Valle and R. Rosel, Surf. Sci. 220 (1989) 322.Google Scholar
  31. [31]
    Y. Iwasawa, R. Mason and G.A. Somorjai, Chem. Phys. Lett. 44 (1976) 468.Google Scholar
  32. [32]
    B. Lang, R.W. Joyner and G.A. Somorjai, Surf. Sci. 30 (1972) 454.Google Scholar
  33. [33]
    Y.O. Park, W.F. Banholzer and R.I. Masel, Surf. Sci. 155 (1985) 341.Google Scholar
  34. [34]
    K.Y. Kung, P. Chen and G.A. Somorjai, Surf. Sci., to be published.Google Scholar
  35. [35]
    E.A. Wovchko and J.T. Yates, J. Am. Chem. Soc. 118 (1996) 10250.Google Scholar
  36. [36]
    N. Kruse and A. Gaussman, Surf. Sci. 266 (1992) 51.Google Scholar
  37. [37]
    B.J. McIntyre, M. Salmeron and G.A. Somorjai, J. Vac. Sci. Technol. A 11 (1993) 1964.Google Scholar
  38. [38]
    R. Burch and A.R. Flambard, J. Catal. 86 (1982) 384.Google Scholar
  39. [39]
    A. Boffa, C. Lin, A.T. Bell and G.A. Somorjai, J. Catal. 149 (1994) 149.Google Scholar
  40. [40]
    W.M.H. Sachtler and M. Ichikawa, J. Phys. Chem. 90 (1986) 4752.Google Scholar
  41. [41]
    W.M.H. Sachtler, D.F. Shriver, W.B. Hollenberg and A.F. Long, J. Catal. 92 (1985) 429.Google Scholar
  42. [42]
    G.A. Somorjai, T.S. Oyama, G.T. Went, K.B. Lewis and A.T. Bell, J. Phys. Chem. 93 (1989) 6786.Google Scholar
  43. [43]
    G.L. Haller and D.E. Resasco, Adv. Catal. 36 (1989) 173.Google Scholar
  44. [44]
    I. Mochida, I. Nobuhide, H. Ishibashi and H. Fujitsu, J. Catal. 110 (1988) 159.Google Scholar
  45. [45]
    T. Iizuka, Y. Tanaka and K. Tanabe, J. Mol. Catal. 17 (1982) 381.Google Scholar
  46. [46]
    A. Trovarelli, C. Mustazza, G. Dolcetti, J. Kaspar and M. Graziani, Appl. Catal. 65 (1990) 129.Google Scholar
  47. [47]
    S.J. Tauster, Acc. Chem. Res. 20 (1987) 389.Google Scholar
  48. [48]
    A.T. Bell, Catalyst Design - Progress and Perspectives, ed. L.L. Hegedus (Wiley, New York, 1987).Google Scholar
  49. [49]
    A.M. Wander, M.A. van Hove and G.A. Somorjai, Phys. Rev. Lett. 67 (1991) 626.Google Scholar
  50. [50]
    G.A. Somorjai and G. Rupprechter, in: Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis, Stud. Surf. Sci. Catal., Vol. 109, eds. G.F. Froment and K. Waugh (Elsevier, 1997) p. 35.Google Scholar
  51. [51]
    L.L. Kesmodel, P.C. Stair, R.C. Baetzold and G.A. Somorjai, Phys. Rev. Lett. 36 (1976) 1316.Google Scholar
  52. [52]
    L.L. Kesmodel, L.H. Dubois and G.A. Somorjai, J. Chem. Phys. 70 (1979) 2180.Google Scholar
  53. [53]
    U. Starke, A. Barbieri, N. Materer, M.A. van Hove and G.A. Somorjai, Surf. Sci. 286 (1993) 1.Google Scholar
  54. [54]
    A. Wander, M.A. van Hove and G.A. Somorjai, Phys. Rev. Lett. 67 (1991) 626.Google Scholar
  55. [55]
    M.A. van Hove, R.J. Koestner, P.C. Stair, J.P. Bikerian, L.L. Kesmodel, I. Bartos and G.A. Somorjai, Surf. Sci. 103 (1981) 189.Google Scholar
  56. [56]
    Y. Ganthier, R. Baudoing-Savois, K. Heinz and H. Landskron, Surf. Sci. 251 (1991) 493.Google Scholar
  57. [57]
    J.H. Onuferko, D.P. Woodruff and P.W. Holland, Surf. Sci. 87 (1979) 357.Google Scholar
  58. [58]
    W. Oed, H. Lindner, U. Starke, K. Heinz, K. Muller and J.B. Pendry, Surf. Sci. 224 (1989) 179.Google Scholar
  59. [59]
    M.A. van Hove, W.M. Weinberg and C.M. Chan, Low Energy Electron Diffraction (Springer, Berlin, 1986).Google Scholar
  60. [60]
    H.D. Shih, F. Jona, P.W. Jepsen and P.M. Marcus, Phys. Rev. Lett. 46 (1981) 731.Google Scholar
  61. [61]
    C.M. Chan and M.A. van Hove, Surf. Sci. 183 (1987) 303.Google Scholar
  62. [62]
    B.J. McIntyre, M. Salmeron and G.A. Somorjai, J. Vac. Sci. Technol. A 266 (1992) 51.Google Scholar
  63. [63]
    Y.R. Shen, Surf. Sci. 299/300 (1994) 551.Google Scholar
  64. [64]
    Q. Du, R. Superfine, E. Freysz and Y.R. Shen, Phys. Rev. Lett. 70 (1993) 2313.Google Scholar
  65. [65]
    Y.R. Shen, Nature 337 (1989) 519.Google Scholar
  66. [66]
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).Google Scholar
  67. [67]
    P. Guyot-Sionnest, J.H. Hunt and Y.R. Shen, Phys. Rev. Lett. 59 (1987) 1597.Google Scholar
  68. [68]
    C.D. Bain, J. Chem. Soc. Faraday Trans. 91 (1995) 1281.Google Scholar
  69. [69]
    P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942.Google Scholar
  70. [70]
    I. Horiuti and M. Polanyi, Trans. Faraday Soc. 30 (1934) 1164.Google Scholar
  71. [71]
    A. Cassuto, J. Kiss and J. White, Surf. Sci. 255 (1991) 289.Google Scholar
  72. [72]
    H. Ibach and S. Lehwald, Surf. Sci. 117 (1982) 685.Google Scholar
  73. [73]
    P. Cremer, C. Stanners, J. Niemantsverdriet, Y. Shen and G. Somorjai, Surf. Sci. 328 (1993) 111.Google Scholar
  74. [74]
    T. Land, T. Michely, R. Behm, J. Hemminger and G. Comsa, J. Chem. Phys. 97 (1992) 6774.Google Scholar
  75. [75]
    S. Davis, F. Zaera, B. Gordon and G. Somorjai, J. Catal. 92 (1985) 250.Google Scholar
  76. [76]
    T. Beebe and J. Yates, J. Am. Chem. Soc. 108 (1986) 663.Google Scholar
  77. [77]
    S. Mohsin, M. Trenary and H. Robota, J. Phys. Chem. 92 (1988) 5229.Google Scholar
  78. [78]
    P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942.Google Scholar
  79. [79]
    P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Phys. Chem. 10040 (1996) 16302.Google Scholar
  80. [80]
    U. Starke, A. Barbieri, N. Materer, M.A. van Hove and G.A. Somorjai, Surf. Sci. 286 (1993) 1.Google Scholar
  81. [81]
    R. Döll, C.A. Gerken, M.A. van Hove and G.A. Somorjai, Surf. Sci. 374 (1997) 151.Google Scholar
  82. [82]
    McCrea, K.M., Parker and G.A. Somorjai, in preparation.Google Scholar
  83. [83]
    M.E. Bussell, F.C. Henn and C.T. Campbell, J. Phys. Chem. 96 (1992) 5965.Google Scholar
  84. [84]
    J.A. Rodriguez and C.T. Campbell, J. Phys. Chem. 93 (1989) 826.Google Scholar
  85. [85]
    C.L.A. Lamont, M. Borbach, R. Martin, P. Gardner, T.S. Jones, H. Conrad and A.M. Bradshaw, Surf. Sci. 374 (1997) 215.Google Scholar
  86. [86]
    D.P. Land, W. Erley and H. Ibach, Surf. Sci. 289 (1993) 773.Google Scholar
  87. [87]
    R. Martin, P. Gardner, M. Tushaus, C.H. Bonev, A.M. Bradshaw and T.S. Jones, J. Electron Spectrosc. Relat. Phenom. 54/55 (1990) 773.Google Scholar
  88. [88]
    X. Su, K. Kung, J. Lahtinen, Y.R. Shen and G.A. Somorjai, Catal. Lett. 54 (1998) 9.Google Scholar
  89. [89]
    X. Su, Y.R. Shen, K.Y. Kung, J. Lahtinen and G.A. Somorjai, J. Mol. Catal. A 141 (1999) 9.Google Scholar
  90. [90]
    G.M. Pajonk, S.J. Teichner and J.E. Germain, eds., Studies in Surface Science and Catalysis, Vol. 17 (Elsevier, Amsterdam, 1983).Google Scholar
  91. [91]
    W.C. Connor, G.M. Pajonk and S.J. Teichner, Adv. Catal. 34 (1986) 1.Google Scholar
  92. [92]
    J. Hager, Y.R. Shen and H. Walther, Phys. Rev. A 31 (1985) 1962.Google Scholar
  93. [93]
    W.D. Gillespie, R.K. Herz, E.E. Peterson and G.A. Somorjai, J. Catal. 70 (1981) 147.Google Scholar
  94. [94]
    G.A. Somorjai, in: The Physical Basis for Heterogeneous Catalysis, eds. E. Drauglis and R.I. Jaffee (Plenum, New York, 1976).Google Scholar
  95. [95]
    S.M. Davis and G.A. Somorjai, The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 4., eds. P.A. King and D.P. Woodruff (Elsevier, 1982).Google Scholar
  96. [96]
    G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).Google Scholar
  97. [97]
    J.A. Rodriguez and D.W. Goodman, Surf. Sci. Rep. 14 (1991) 1.Google Scholar
  98. [98]
    F.H. Ribeiro, A.L. Bonivardi, C. Kim and G.A. Somorjai, J. Catal. 150 (1994) 186.Google Scholar
  99. [99]
    C. Kim and G.A. Somorjai, Catalysis of Organic Reactions (Dekker, New York, 1994) pp. 511–514.Google Scholar
  100. [100]
    C. Kim and G.A. Somorjai, J. Catal. 134 (1992) 179.Google Scholar
  101. [101]
    F.H. Ribeiro, A.L. Bonivardi and G.A. Somorjai, Catal. Lett. 27 (1994) 1.Google Scholar
  102. [102]
    F.H. Ribeiro, A.L. Bonivardi, C. Kim and G.A. Somorjai, J. Catal. 150 (1994) 186.Google Scholar
  103. [103]
    M.X. Yang, D.H. Gracias, P.W. Jacobs and G.A. Somorjai, Langmuir 14 (1998) 1458.Google Scholar
  104. [104]
    M.X. Yang, P.W. Jacobs, C. Yoon, L. Muray, E. Anderson, D. Attwood and G.A. Somorjai, Catal. Lett. 45 (1998) 5.Google Scholar
  105. [105]
    A.C. Krauth, K.H. Lee, G.H. Bernstein and E.E. Wolf, Catal. Lett. 27 (1994) 43.Google Scholar
  106. [106]
    A. Avoyan, G. Rupprechter, A.S. Eppler and G.A. Somorjai, Topics Catal. 10 (2000) 107.Google Scholar
  107. [107]
    A.S. Eppler, G. Rupprechter, L. Guczi and G.A. Somorjai, J. Phys. Chem. 101 (1997) 9973.Google Scholar
  108. [108]
    K. Wong, S. Johansson and B. Kasemo, Faraday Discussions 105 (1996) 237.Google Scholar
  109. [109]
    G.A. Somorjai and M.X. Yang, J. Mol. Catal. A 115 (1997) 389.Google Scholar
  110. [110]
    A.S. Eppler, J. Zhu, E.A. Anderson and G.A. Somorjai, Topics Catal., to be published.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • G.A. Somorjai
    • 1
  • K.R. McCrea
    • 1
  • J. Zhu
    • 1
  1. 1.Department of ChemistryUniversity of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations