Solar Physics

, Volume 205, Issue 1, pp 165–175 | Cite as

Time Evolution of low-Frequency Periodicities in Cosmic ray Intensity

  • K. Kudela
  • J. Rybák
  • A. Antalová
  • M. Storini


The long-time series of daily means of cosmic-ray intensity observed by four neutron monitors at different cutoff rigidities (Calgary, Climax, Lomnický Štít and Huancayo/Haleakala) were analyzed by means of the wavelet transform method in the period range ∼ 60 to ∼ 1000 days. The contributions of the time evolution of three quasi-periodic cosmic-ray signals (∼ 150 d, ∼ 1.3 yr and ∼ 1.7 yr) to the global one are obtained. While the ∼ 1.7-yr quasi-periodicity, the most remarkable one in the studied interval, strongly contributes to the cosmic ray intensity profile of solar cycle 21 (particularly in 1982), the ∼ 1.3-yr one, which is better correlated with the same periodicity of the interplanetary magnetic field strength, is present as a characteristic feature for the decreasing phases of the cycles 20 and 22. Transitions between these quasi-periodicities are seen in the wavelet power spectra plots. Obtained results support the claimed difference in the solar activity evolution during odd and even solar activity cycles.


Time Evolution Power Spectrum Solar Activity Solar Cycle Magnetic Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antalová, A.: 1999, in A. Wilson (ed.), Magnetic Fields and Solar Processes, Proceedings of the 9th European Meeting on Solar Physics, ESA SP-448, 743.Google Scholar
  2. Astafyeva, N. M. and Bazilevskaya, G. A.: 1999, Phys. Chem. Earth C25, 129.Google Scholar
  3. Attolini, M. R., Cecchini, S., Guidi, I., and Galli, M.: 1975, Planetary Space Sci. 23, 1603.Google Scholar
  4. Bazilevskaya, G. A., Krainev, M. B., Makhmutov, V. S., Flückiger, E. O., Sladkova, A. I., and Storini, M.: 2000, Solar Phys. 197, 157.Google Scholar
  5. Box, G. E. P. and Jenkins, G. M.: 1976, Time Series Analysis: Forecasting and Control, Holden Day, San Francisco.Google Scholar
  6. Cane, H. V., Richardson, I. G., and von Rosenvinge, T. T.: 1998, J. Geophys. Res. 25, 4437.Google Scholar
  7. Daubechies, I.: 1990, IEEE Trans. Inf. Theory 36, 961.Google Scholar
  8. Duldig, M. L.: 2000, Space Sci. Rev. 93, 207.Google Scholar
  9. Gazis, P. R., Richardson, J. D., and Paularena, K. I.: 1995, Geophys. Res. Lett. 22, 1165.Google Scholar
  10. Hill, M. E., Hamilton, D. C., and Krimigis, S. M.: 2001, J. Geophys. Res. 106, 8315.Google Scholar
  11. Hundhausen, A. J., Sime, D. J., Hansen, R. Y., and Hansen, S. F.: 1980, Science 207, 761.Google Scholar
  12. Jokipii, J. R.: 1998, in S. T. Suess, B. T. Tsurutani (eds.), From the Sun: Auroras, Magnetic storms, Solar flares, Cosmic rays, American Geophysical Union, Washington, p. 123.Google Scholar
  13. Joshi, A.: 1999, Solar Phys. 185, 397.Google Scholar
  14. Kóta, J. and Jokipii, J. R.: 1983, Astrophys. J. 265, 573.Google Scholar
  15. Kudela, K., Ananth, A. G., and Venkatesan, D.: 1991, J. Geophys. Res. 96, 15 871.Google Scholar
  16. Kudela, K., Yasue, S.-I., Munakata, K., and Bobik, P.: 1999, Proc. 26th Int. Cosmic Ray Conf., Salt Lake City, 7 163.Google Scholar
  17. Kudela, K., Antalová, A., Rybák, J., and Storini, M.: 2001, contribution to the ISCS 2001 Workshop, Longmont, CO, June 13–16, 2001.Google Scholar
  18. Kumar, P. and Foufoula-Georgiou, E.: 1997, Rev. Geophys. 235, 385.Google Scholar
  19. Lean, J. L. and Brueckner, G. E.: 1989, Astrophys. J. 337, 568.Google Scholar
  20. McIntosh, P. S., Thompson, R. J., and Willock, E. C.: 1992, Nature 360, 322.Google Scholar
  21. Mendoza, B., Lara, A., Maravilla, D., and Valdes-Galicia, J. F.: 1999, Solar Phys. 185, 405.Google Scholar
  22. Mursula, K. and Zieger, B.: 2000, Adv. Space Res. 25, 1939.Google Scholar
  23. Owens, A. J. and Jokipii, J. R.: 1974, J. Geophys. Res. 79, 907.Google Scholar
  24. Paularena, K. I., Szabo, A., and Richardson, J. D. L.: 1995, J. Geophys. Res. 22, 3001.Google Scholar
  25. Richardson, J. D., Paularena, K. I., Belcher, J. W., and Lazarus, A. J.: 1994, Geophys. Res. Lett. 21, 1559.Google Scholar
  26. Stamper, R., Lockwood, M., Wild, M. N., and Clark, T. D. G.: 1999, J. Geophys. Res. 104, 28 325.Google Scholar
  27. Storini, M.: 1997a, Report CNR/IFSI-97-1, Frascati, Italy.Google Scholar
  28. Storini, M.: 1997b, Il Nuovo Cimento 20C, 871.Google Scholar
  29. Storini, M. and Sýkora, J.: 1995, Contr. Astron. Obs. Skalnaté Pleso 25, 90.Google Scholar
  30. Storini, M., Borello-Filisetti, O., Mussino, V., Parisi, M., Sýkora, J.: 1995, Solar Phys. 157, 375.Google Scholar
  31. Torrence, C. and Compo, G. P.: 1998, Bull. Amer. Meteorol. Society 79, 61.Google Scholar
  32. Valdes-Galicia, J. F. and Mendoza, B.: 1998, Solar Phys. 178, 183.Google Scholar
  33. Valdes-Galicia, J. F., Perez-Enriquez, R., and Otaola, J. A.: 1996, Solar Phys. 167, 409.Google Scholar
  34. Xanthakis, J., Mavromichalaki, H., and Petropoulos, B.: 1989, Solar Phys. 122, 345.Google Scholar
  35. Zieger, B. and Mursula, K.: 1998, Geophys. Res. Lett. 25, 841.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • K. Kudela
    • 1
  • J. Rybák
    • 2
  • A. Antalová
    • 1
  • M. Storini
    • 3
  1. 1.IEP/SASKošiceSlovak Republic
  2. 2.Astronomical Institute/SASTatranská LomnicaSlovak Republic
  3. 3.Area di Ricerca Roma-Tor VergataIFSI/CNR

Personalised recommendations