Advertisement

Russian Journal of Developmental Biology

, Volume 33, Issue 1, pp 22–29 | Cite as

A Study of Hemopoiesis on Sublayer of Peritoneal Cells in the Presence of Hemopoietic Cytokines

  • O. V. Payushina
  • T. V. Michurina
  • G. P. Satdykova
  • T. M. Nikonova
  • N. G. Khrushchov
Article
  • 16 Downloads

Abstract

We studied the effects of erythropoietin and thrombopoietin on the clonogenic capacity and direction of differentiation of the hemopoietic cells that form colonies on acetate cellulose membrane in the peritoneal cavity of mice. An increased level of erythropoietin in the blood of recipient mice after blood letting led to the appearance of erythroid colonies upon transplantation of syngeneic hemopoietic cells but did not affect the differentiation of transplanted xenogeneic (guinea pig) hemopoietic cells. Erythropoietin transported top the stromal sublayer by a polymeric carrier also induced erythroid differentiation, while thrombopoietin transported in a similar way somewhat enhanced megakaryocytopoiesis.

hemopoietic differentiation mouse cytokines blood letting ethylene vinyl acetate erythropoietin thrombopoietin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Cui, Y.-F., Lord, B.I., Woolford, L.B., and Testa, N.G., The Relative Spatial Distribution of in vitro-CFCs in the Bone Marrow, Responding to Specific Growth Factors, Cell Proliferat., 1996, vol. 29, no. 5, pp. 243-257.Google Scholar
  2. Dessypris, E.N., Gleaton, J.H., and Armstrong, O.L., Effect of Human Recombinant Erythropoietin on Human Marrow Megakaryocyte Colony Formation in vitro, Br. J. Haemat., 1987, vol. 65, pp. 265-269.Google Scholar
  3. Drachman, J.G., Role of Thrombopoietin in Hematopoietic Stem Cell and Progenitor Regulation, Curr. Opin. Hematot, 2000, vol. 7, no. 3, pp. 183-190.Google Scholar
  4. Era, T., Takahashi, T., Sakai, K., et al., Thrombopoietin Enhances Proliferation and Differentiation of Murine Yolk Sac Erythroid Progenitors, Blood, 1997, vol. 4, pp.1207-1213.Google Scholar
  5. Fattori, E., Rocca, C.-D., Costa, P., et al., Development of Progressive Kidney Damage and Myeloma Kidney in Interleukin-6 Transgenic Mice, Blood, 1994, vol. 83, no.9, pp. 2570-2579.Google Scholar
  6. Goan, S.-R., Schwarz, K., Von Harsdorf, S., et al., Fibroblasts Retrovirally Transfected with the Human IL-3 Gene Initiate and Sustain Multilineage Human Hematopoiesis in SCID Mice: Comparison of CD34-Enriched and in vitro Expanded Grafts, Bone Marrow Transplantation, 1996, vol. 18, no. 3, pp. 513-519.Google Scholar
  7. Gilad, J.Z., Teles, R., Goodson, M., et al., Development of a Clindamycin-Impregnated Fiber as an Intracanal Medication in Endodontic Therapy, J. Endod., 1999, vol. 25, no. 11, pp. 722-727.Google Scholar
  8. Hoffman, D., Wahlberg, L., and Aebischer, P., NGF Released from a Polymer Matrix Prevents Loss of ChAT Expression in Basal Forebrain Neurons Following a Fimbria-Fornix Lesion, Exp. Neurol., 1990, vol. 110, no. 1, pp.39-44.Google Scholar
  9. Kaushansky, K., Broudy, V.C., Lin, N., et al., Thrombopoietin, the Mpl Ligand, Is Essential for Full Megakaryocyte Development, Proc. Nat. Acad. Sci. USA, 1995, vol.92, no. 8, pp. 3234-3238.Google Scholar
  10. Khrushchov, N.G., Michurina, T.V., Bueverova, E.I., et al., Hemopoiesis in Experiments with Underlayers of Different Cell Composition, Rus. J. Devel. Biol., 1994, vol. 25, no.4, p. 218.Google Scholar
  11. Kim, H.D. and Valentini, R.F., Human Osteoblast Response in vitro to Platelet-Derived Growth Factor and Transforming Growth Factor-β Delivered from Controlled-Release Polymer Rods, Biomaterials, 1997, vol. 18, no.17, pp. 1175-1184.Google Scholar
  12. Kobayashi, M., Laver, J.H., Kato, T., et al., Recombinant Human Thrombopoietin (Mpl Ligand) Enhances Proliferation of Erythroid Progenitors, Blood, 1995, vol. 86, no. 7, pp. 2494-2499.Google Scholar
  13. Kuzin, B.A., Khrushchov, N.G., Slesinger, M.S., et al., Transgenic Mice with Human Erythropoietin Gene in Experimental Studies of Hemopoietic Differentiation, Ontogenez, 1991, vol. 22, no. 4, pp. 421-422.Google Scholar
  14. Langer, R. and Folkman, J., Polymers for the Sustained Release of Proteins and Other Macromolecules, Nature, 1976, vol. 263, no. 5580, pp. 797-800.Google Scholar
  15. Langer, R., Fefferman, M., Gryska, P., and Bergman, K., A Simple Method for Studying Chemotaxis Using Sustained Release of Attractants from Inert Polymers, Can. J. Microbiol., 1980, vol. 26, no. 2, pp. 274-278.Google Scholar
  16. Lesser, G.J., Grossman, S.A., Leong, K.W., et al., In vitro and in vivo Studies of Subcutaneous Hydromorphone Implants Designed for the Treatment of Cancer Pain, Pain, 1996, vol. 65, nos. 2-3, pp. 265-272.Google Scholar
  17. Li, C.L. and Johnson, G.R., Stem Cell Factor Enhances the Survival but not the Self-Renewal of Murine Hematopoietic Long-Term Repopulating Cells, Blood, 1994, vol. 84, no. 2, pp. 408-414.Google Scholar
  18. Lopez, J.J., Edelman, E.R., Stamler, A., et al., Angiogenic Potential of Perivascularly Delivered aFGF in a Porcine Model of Chronic Myocardial Ischemia, Am. J. Physiol., 1998, vol. 274, no. 3, part 2, pp. H930-936.Google Scholar
  19. Luo, D., Woodrow-Mumford, K., Belcheva, N., and Saltzman, W.M., Controlled DNA Delivery Systems, Pharm. Res., 1999, vol. 16, no. 8, pp. 1300-1308.Google Scholar
  20. Michurina, T.V., Ryzantsev, S.N., Satdykova, G.P., et al., A Study of Hemopoietic Foci on Sublayer of Peritoneal Cells, Ontogenez, 1980, vol. 11, no. 2, pp. 138-147.Google Scholar
  21. Michurina, T.V., Satdykova, G.P., Vasil'eva, T.V., and Khrushchov, N.G., Structure of Ectopic Hemopoietic Foci in Mice, Arkh. Anat. Gistol. Embriol., 1985, vol. 89, no. 7, pp. 62-69.Google Scholar
  22. Michurina, T.V., Satdykova, G.P., Balasz, A., et al., Characteristics of hemopoietic Cells Forming Colonies on Acetate-Cellulose Membranes and Their Differences from other Clonogenic Cells, Ontogenez, 1991, vol. 22, no. 2, pp. 137-145.Google Scholar
  23. Michurina, T. V., Vasil'eva, T.V., Bueverova, E.I., et al., An Experimental Study of Cell Interactions during Hemopoiesis, Ontogenez, 1999, vol. 30, no. 1, pp. 3-25.Google Scholar
  24. Miyazaki, H. and Kato, T., Thrombopoietin: Biology and Clinical Potentials, Int. J. Hematol., 1999, vol. 70, no. 4, pp. 216-225.Google Scholar
  25. Nishi, N., Nakahata, T., Koike, K., et al., Induction of Mixed Erythroid-Megakaryocyte Colonies and Bipotential Blast Cell Colonies by Recombinant Human Erythropoietin in Serum-Free Culture, Blood, 1990, vol. 76, pp.1330-1335.Google Scholar
  26. Pavlov, A.D. and Morshchakova, E.F., Regulyatsiya eritropoeza: Fiziologicheskie i klinicheskie aspekty (Regulation of Erythropoiesis: Physiological and Clinical Aspects), Moscow: Meditsina, 1987.Google Scholar
  27. Radomsky, M.L., Whaley, K.J., Cone, R.A., and Saltzman, W.M., Controlled Vaginal Delivery of Antibodies in the Mouse, Biol. Reprod., 1992, vol. 47, no. 1, pp.133-140.Google Scholar
  28. Saltzman, W.M., Mak, M.W., Mahoney, M.J., et al., Intracranial Delivery of Recombinant Nerve Growth Factor: Release Kinetics and Protein Distribution for Three Delivery Systems, Pharm. Res., 1999, vol. 16, no. 2, pp.232-240.Google Scholar
  29. Sasaki, H., Ikuta, K., Funabiki, T., et al., Effects of Recombinant Thrombopoietin on the Growth of Murine Primitive and Committed Hematopoietic Progenitors in Serum-Free Culture, Pediatr. Int., 1999, vol. 41, no. 6, pp. 666-672.Google Scholar
  30. Seki, M., Hematopoietic Colony Formation in a Macrophage Layer Provided by Intraperitoneai Insertion of Cellulose Acetate Membrane, Transplantation, 1973, vol. 16, no.6, pp. 544-549.Google Scholar
  31. Shimomura, T., Yonemura, Y., Miyazoe, T., et al., Thrombopoietin Stimulates Murine Lineage Negative, Sca-1+, c-Kit+, CD34-Cells: Comparative Study with Stem Cell Factor or Interleukin, Int. J. Hematol., 2000, vol. 71, no.1, pp. 33-39.Google Scholar
  32. Toksoz, D., Zsebo, K.M., Smith, K.A., et al., Support of Human Hematopoiesis in Long-Term Bone Marrow Cultures by Murine Stromal Cells Selectively Expressing the Membrane-Bound and Secreted Forms of the Human Homolog of the Steel Gene Product, Stem Cell Factor, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, no. 16, pp. 7350-7354.Google Scholar
  33. Torok-Storb, B.J., Wolf, N.S., and Boggs, D.S., Erythroid Cell Growth from Normal and W/Wv Murine Bone Marrow on Macrophage-Coated Membranes, Blood, 1977, vol. 50, no. 5, pp. 857-866.Google Scholar
  34. Villeval, J.L, Cohen-Solal, K., Tulliez, M., et al., High Thrombopoietin Production by Hematopoietic Cells Induces a Fatal Myeloproliferative Syndrome in Mice, Blood, 1997, vol. 90, no. 11, pp. 4369-4383.Google Scholar
  35. Walsh, W.R., Kim, H.D., Jong, Y.S., and Valentini, R.F., Controlled Release of Platelet-Derived Growth Factor Using Ethylene Vinyl Acetate Copolymer (EVAc) Coated on Stainless-Steel Wires, Biomaterials, 1995, vol. 16, no.17, pp. 1319-1325.Google Scholar
  36. Wang, C.C., Li, J., Teo, C.S., and Lee, T., The Delivery of BCNU to Brain Tumors, J. Controlled Release, 1999, vol. 61, nos. 1-2, pp. 21-41.Google Scholar
  37. Wiranowska, M., Ransohoff, J., Weingart, J.D., et al., Interferon-Containing Controlled-Release Polymers for Localized Cerebral Immunotherapy, J. Interferon Cytokine Res., 1998, vol. 18, no. 6, pp. 377-385.Google Scholar
  38. Yastrebov, A.P., Yushkov, B.G., and Bol'shakov, V.N., Regulyatsiya gemopoeza pro vozdeistvii na organizm ekstremal'nykh faktorov (Regulation of Hemopoiesis under the Influence of Extremal Factors), Sverdlovsk: Ural. Otdel. Akad. Nauk SSSR, 1988.Google Scholar
  39. Znoiko, S.L., Miloserdov, Yu.V., and Pozdnyakov, S.P., A Study of the Rate and Duration of Release of Labeled Biologically Active Substances from Copolymer Ethylene Vinyl Acetate, Izv. Akad. Nauk SSSR. Ser. Biol., 1990, no. 1, pp. 22-29.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • O. V. Payushina
    • 1
  • T. V. Michurina
    • 1
  • G. P. Satdykova
    • 1
  • T. M. Nikonova
    • 1
  • N. G. Khrushchov
    • 1
  1. 1.Russian Academy of SciencesKol'tsov Institute of Developmental BiologyMoscowRussia

Personalised recommendations