Journal of Materials Science

, Volume 37, Issue 4, pp 753–764 | Cite as

Crystal plasticity analysis of earing in deep-drawn OFHC copper cups

  • M. Grujicic
  • S. Batchu


The theory of thermally-activated slip is used to derive a crystal-plasticity materials constitutive model for deformation of OFHC copper single crystals. The mechanical response of the polycrystalline material is next determined from the single-crystalline materials constitutive relations using the classical Taylor approximation for apportionment of the deformation gradient between grains. Simulations of the deep drawing of cylindrical cups from as-rolled OFHC-copper blanks are next carried out using an explicit finite element formulation. The results obtained show that the crystallographic texture in as-rolled sheets, which can be accounted for through the use of crystal-plasticity, gives rise to rim-earing in fully-drawn cups. It is further shown that the extent of rim-earing can be greatly reduced by properly modifying the shape of the blank. A procedure is next proposed for optimization of the blank shape.


Deformation Gradient Deep Drawing Polycrystalline Material Crystallographic Texture Crystal Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. E. G. TUCKER, Acta Metall. 9 (1961) 275.Google Scholar
  2. 2.
    D. V. WILSON and R. D. BUTLER, Journal of the Institute of Metals 90 (1961) 473.Google Scholar
  3. 3.
    R. BECKER, R. E. SMELSER and S. PANCHANADEESWARAN, Modeling and Simulations in Material Science and Engineering 1 (1993) 203.Google Scholar
  4. 4.
    L. ANAND and S. BALASUBRAMANIAN, J. Appl. Mech. 33 (1998) 100.Google Scholar
  5. 5.
    M. GRUJICIC, Unpublished work.Google Scholar
  6. 6.
    C. A. TEODOSIU, in Proceedings of the Conference on Fundamental Aspects of Dislocation Theory, 1970, edited by R. Simmons, J. A. de Wit and R. Bullough, p. 837.Google Scholar
  7. 7.
    R. HILL and J. R. RICE, Journal of the Mechanics and Physics of Solids 20 (1972) 401.Google Scholar
  8. 8.
    J. MANDEL, in Proceedings of the International Symposium on Foundations of Continuum Thermodynamics, edited by D. Domingos, J. J. Nina, J. H. Whitlaw (McMillan, London, 1974) p. 283.Google Scholar
  9. 9.
    C. TEODOSIU and F. SIDOROFF, International Journal of Engineering Science 14 (1976) 165.Google Scholar
  10. 10.
    R. J. ASARO and J. R. RICE, Journal of the Mechanics and Physics of Solids 25 (1977) 309.Google Scholar
  11. 11.
    R. J. ASARO, Advances in Applied Mechanics 23 (1983) p. 1; ASME Journal of Applied Mechanics 50 (1983) 921.Google Scholar
  12. 12.
    H. CONRAD, Journal of Metals 16 (1964) 582.Google Scholar
  13. 13.
    U. F. KOCKS, A. S. ARGON and M. F. ASHBY, in “Progress in Material Science” (Pergamon Press, London, 1975).Google Scholar
  14. 14.
    H. J. FROST and M. F. ASHBY, “Deformation Mechanism Maps” (Pergamon Press, New York, 1982).Google Scholar
  15. 15.
    A. S. ARGON, in “Physical Metallurgy” edited by R. W. Cahn and P. Haasen (Elsevier, Amsterdam, 1995).Google Scholar
  16. 16.
    E. OROWAN, Phil. Trans. R. Soc. London A 52 (1940) 8.Google Scholar
  17. 17.
    A. S. ARGON and G. H. EAST, in Proceedings of the 5th International Conference on the Strength of Metals and Alloys, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon Press, Oxford, 1979) p. 9.Google Scholar
  18. 18.
    A. H. COTRELL and R. J. STOKES, Proceedings of the Royal Society of London A 233 (1955) 17.Google Scholar
  19. 19.
    D. PEIRCE, R. J. ASARO and A. NEEDLEMAN, Acta Metall. 30 (1982) 1087.Google Scholar
  20. 20.
    R. J. ASARO and A. NEEDLEMAN, Acta Metall. 33 (1985) 923.Google Scholar
  21. 21.
    K. S. HAVNER, “Finite Plastic Deformation of Crystalline Solids,” 1st ed. (Cambridge University Press, Cambridge, UK, 1992).Google Scholar
  22. 22.
    J. L. BASSANI, Advances in Applied Mechanics 30 (1993) 191.Google Scholar
  23. 23.
    S. R. KALIDINDI, C. A. BRONKHORST and L. ANAND, Journal of the Mechanics and Physics of Solids 40 (1992) 536.Google Scholar
  24. 24.
    G. I. TAYLOR, in “Stephen Timoshenko 60th Anniversary Volume” (McMillan, New York, 1938) p. 218.Google Scholar
  25. 25.
    Idem., Journal of the Institute of Metals 62 (1938) 307.Google Scholar
  26. 26.
    C. A. BRONKHORST, S. R. KALIDINDI and L. ANAND, Phil. Trans. R. Soc. London A 341 (1992) 443.Google Scholar
  27. 27.
    M. KOTHARI and L. ANAND, Journal of the Mechanics and Physics of Solids (1997).Google Scholar
  28. 28.
    ABAQUS/Explicit 5.8. Hibbit, Karlsson & Sorenson, Inc., Providence, R. I. ABAQUS Reference Manuals, 1998.Google Scholar
  29. 29.
    J. C. NAGTEGAAL and L. M. TAYLOR, 242 (1968) 1317.Google Scholar
  30. 30.
    A. M. LUSH, Ph.D thesis, Massachusetts Institute of Technology, June 1990.Google Scholar
  31. 31.
    WALTERS, PARKER, MORGAN and DEMING (eds)., “Sequential Simplex Optimization. A Technique for Improving Quality and Productivity in Research, Development, and Manufacturing” (CRC Press, Boca Raton, FL, 1991).Google Scholar
  32. 32.
    J. A. NELDER and R. A. MEAD, Computer Journal 7 (1965) 308.Google Scholar
  33. 33.
    M. GRUJICIC, in prepration.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Grujicic
    • 1
  • S. Batchu
    • 1
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA

Personalised recommendations