Advertisement

Theoretical and Mathematical Physics

, Volume 130, Issue 1, pp 1–10 | Cite as

Regularization-Independent Gauge-Invariant Renormalization of the Yang–Mills Theory

  • A. A. Slavnov
Article

Abstract

A recently proposed renormalization scheme is applied to non-Abelian gauge fields. Explicitly obtained gauge-invariant expressions for the renormalized vertex functions are independent of the choice of the intermediate regularization scheme.

Keywords

Gauge Field Mill Theory Vertex Function Renormalization Scheme Regularization Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. A. Slavnov, Theor. Math. Phys., 10, 99 (1972).Google Scholar
  2. 2.
    J. G. Taylor, Nucl. Phys. B, 33, 436 (1971).Google Scholar
  3. 3.
    K. Wilson, Phys. Rev. D, 14, 2445 (1974).Google Scholar
  4. 4.
    G. 't Hooft and M. Veltman, Nucl. Phys. B, 44, 189 (1972).Google Scholar
  5. 5.
    P. Breitenlohner and D. Maison, Commun. Math. Phys., 52, 11 (1977).Google Scholar
  6. 6.
    A. A. Slavnov, Theor. Math. Phys., 13, 1064 (1972).Google Scholar
  7. 7.
    B. W. Lee and J. Zinn-Justin, Phys. Rev. D, 5, 3137 (1972).Google Scholar
  8. 8.
    T. D. Bakeyev and A. A. Slavnov, Mod. Phys. Lett. A, 11, 1539 (1996).Google Scholar
  9. 9.
    S. A. Frolov and A. A. Slavnov, Phys. Lett. B, 309, 344 (1993).Google Scholar
  10. 10.
    M. M. Deminov and A. A. Slavnov, Phys. Lett. B, 50, 297 (2001).Google Scholar
  11. 11.
    N. N. Bogoliubov and O. S. Parasyuk, Dokl. Akad. Nauk SSSR, 100, 25 (1955).Google Scholar
  12. 12.
    W. Zimmerman, Commun. Math.Phys., 39, 81 (1974).Google Scholar
  13. 13.
    C. Becch, A. Rouet, and R. Stora, Commun. Math. Phys., 42, 127 (1975).Google Scholar
  14. 14.
    O. Piguet and A. Rouet, Phys. Rep., 76 (1981).Google Scholar
  15. 15.
    P. A. Grass, T. Hurth, and M. Steinhauser, Ann. Phys., 288, 197 (2001).Google Scholar
  16. 16.
    A. A. Slavnov, Phys. Lett. B, 518, 195 (2001).Google Scholar
  17. 17.
    N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantum Fields [in Russian ] (2nd ed.), Nauka, Moscow (1976); English transl., Wiley,New York (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • A. A. Slavnov
    • 1
  1. 1.Steklov Mathematical InstituteRAS, MoscowRussia

Personalised recommendations