Genetic Resources and Crop Evolution

, Volume 48, Issue 6, pp 609–620 | Cite as

Variation of morphological and agronomical traits, andprotein composition in durum wheat germplasm from easternEurope

  • L. Pecetti
  • M.A. Doust
  • L. Calcagno
  • C.N. Raciti
  • G. Boggini
Article

Abstract

Broadening the genetic base upon which the breeding of durumwheat relies is a growing concern in Italy. Exotic materials canrepresent valuable sources of adaptive features and they have beenrepeatedly exploited in the past for direct utilisation and/orintrogression by crossing into existing germplasm. An increase of theavailable genetic variation for the breeding also appearsenvisageable in terms of end-product quality. This studyassessed the variation in germplasm from eastern Europe countries,which could represent novel gene sources for durum wheat improvementin Italy, and verified the presence of variants of potential interestfor agronomical and quality characteristics to be possibly exploitedfor breeding. Fifty-nine landraces from the former USSR and 91from Bulgaria were grown in Sicily and evaluated for agronomicaltraits, spike morphological characteristics (possibly bearingsome taxonomic relevance), and protein composition at three lociencoding for glutenin subunits responsible of flour quality features.The results suggested a similar overall diversity in the two groupsconsidering either the variance of the agronomical characters, or thediversity index (H′) across morphological traits, orthe frequency distribution of electrophoretic patterns of gluteninsubunits encoded at three loci. Genotypes of potential usefulness asdonors of positive agronomical or quality attributes were found inboth germplasm groups, although the agronomical characteristics ofthe exotic genotypes rarely matched those required by the breeding inthe target area. Conversely, the genetic variation found at the threeloci involved in the composition of glutenin subunits appeared ofgreater relevance for the breeding in Italy.

Agronomical traits Eastern Europe Glutenin subunits Landraces Spike morphology Triticum turgidum convar. durum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo E. and Naji I. 1991. Genotype characterization in durum wheat. In: Cereal Improvement Program. Annual Report for 1990. ICARDA, Aleppo, Syria, pp. 105–115.Google Scholar
  2. Ali Dib T., Monneveux P. and Araus J.L. 1990. Breeding durum wheat for drought tolerance: analytical, synthetical approaches and their connections. In: Panayotov I. and Pavlova S. (eds), Prospects and Future Approaches. Proc. Symp. Wheat Breeding. Varna, Bulgaria, pp. 224–240.Google Scholar
  3. Annicchiarico P. and Pecetti L. 1993. Contribution of some agronomic traits to durum wheat performance in a dry Mediterranean area of Northern Syria. Agronomie 13: 25–34.Google Scholar
  4. Annicchiarico P. and Pecetti L. 1998. Yield vs. morphophysiological trait-based criteria for selection of durum wheat in a semi-arid Mediterranean region (northern Syria). Field Crops Research 59: 163–173.Google Scholar
  5. Austin R.B. 1989. Maximising crop production in water-limited environments. In: Baker F.W.G (ed.), Drought Resistance in Cereals. CAB International, Wallingford, UK, pp. 13–25.Google Scholar
  6. Autran J.C. and Feillet P. 1987. Genetic and technological basis of protein quality for durum wheat in pasta. In: Pattakon V. (ed.), Proc. EEC Symp. on Protein Evaluation in Cereals and Legumes. Cereals Institute, Thessaloniki, Greece, pp. 59–71.Google Scholar
  7. Benlaghlid M. and Monneveux P. 1989. Variability of agronomic characters of Moroccan durum and bread wheat landraces. Rachis 3: 5–8.Google Scholar
  8. Beretta A.M., Università degli Studi di MilanoMilan, Italy 1989. Subunità, gluteniniche ad alto peso molecolare (APM) del glutine delle varietà di frumento tenero e duro: variabilità genetica ed aspetti applicative per il miglioramento della qualità tecnologica.Google Scholar
  9. Blanco A., De Pace C., Porceddu E. and Scarascia Mugnozza G.T. 1988. Genetics and breeding of durum wheat in Europe. In: Fabriani G. and Lintas C. (eds), Durum: Chemistry and Technology. Amer. Ass. Cereal Chem. Inc., St. Paul, Minnesota, USA, pp. 17–45.Google Scholar
  10. Boggini G., Di Prima G., Gallo G. and Leonardi S. 1994. Scelta delle varietà di frumento duro. Sicilia. Inf. Agr. 50Suppl. 34: 18–22.Google Scholar
  11. Boggini G., Palumbo M. and Calcagno F. 1990. Characterization and utilization of Sicilian landraces of durum wheat in breeding programs. In: Srivastava J.P. and Damania A.B. (eds), Wheat Genetic Resources Meeting Diverse Needs. John Wiley & Sons, Chichester, UK, pp. 223–234.Google Scholar
  12. Boggini G., Annicchiarico P., Longo A. and Pecetti L. 1992. Produttività e adattamento di nuove costituzioni di frumento duro (Triticum durum Desf.). Riv. Di Agron. 26: 482–488.Google Scholar
  13. Boggini G., Doust M.A., Annicchiarico P. and Pecetti L. 1997. Yielding ability, yield stability, and quality of exotic durum wheat germplasm in Sicily. Plant Breed. 116: 541–545.Google Scholar
  14. Bozzini A. 1970. Genetica e miglioramento genetico dei frumentiduri. Genet. Agr. 24: 145–193.Google Scholar
  15. Carrillo J.M., Vazquez J.F. and Orellana J. 1990. Relationship between gluten strength and glutenin proteins in durum wheat cultivars. Plant Breed. 104: 325–333.Google Scholar
  16. Da Cunha Monteiro A. 1935. Trigos portugueses (Estudo de sua distribuçaono País). Ministério da Agricultura, Lisbon, Portugal, Boletim n. 17-Série A Direcçao Geral dos Serviços Agrícolas.Google Scholar
  17. D'Amato F. 1989. The progress of Italian wheat production in the first half of the 20th century: the contribution of breeders. Agr. Med. 119: 157–174.Google Scholar
  18. De Cillis U. 1942. I frumenti siciliani. Staz. Sper. Granicoltura per la Sicilia, Catania, Italy, Pubbl. N. 9.Google Scholar
  19. D'Ovidio R., Marchitelli C., Masci S., Tosi P., Simeone M., Ercoli Cardelli L. et al. 1998. Molecular analysis of low-molecular-weight glutenin subunit gene from the A and B genomes of wheat. In: Slinkard A.E (ed.), Proc. 9th Int. Wheat Genet. Symp., Saskatoon, Saskatchewan, Canada, 2-7 August 1998. Univ. Ext. Press, Saskatchewan, Canada, pp. 269–272.Google Scholar
  20. Du Cros D.L. 1987. Glutenin proteins and gluten strength in durum wheat. J. Cereal Sci. 5: 3–12.Google Scholar
  21. Evans L.T. 1981. Yield improvement in wheat: empirical or ana-lytical?. In: Evans L.T. and Peacock W.J. (eds), Wheat Science Today and Tomorrow. Cambridge University Press, Cambridge, UK, pp. 203–221.Google Scholar
  22. Evans L.T., Bingham J., Jackson P. and Sutherland J. 1972. Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears. Annals Appl. Biol. 70: 67–76.Google Scholar
  23. Federer W.T. 1956. Augmented (or Hoonuiaku) designs. Hawaiian Planters' Record 55: 191–208.Google Scholar
  24. Frattini L. and Valvassori M. 1977. Caratterizzazione morfo-fisiologica delle varietà di frumento. Ente Nazionale Sementi Elette, Milano, Italy, Quaderno ENSE n. 31.Google Scholar
  25. Jain S.K., Qualset C.O., Bhatt G.M. and Wu K.K. 1975. Geographical patterns of phenotypic diversity in a world collection of durum wheats. Crop Sci. 15: 700–704.Google Scholar
  26. Lafiandra D., Masci S., Margiotta M. and De Ambrogio E. 1998. Development of durum and bread wheat with increased number of high molecular weight glutenin subunits. In: Slinkard A.E. (ed.), Proc. 9th Int. Wheat Genet. Symp., Saskatoon, Saskatchewan, Canada, 2-7 August 1998. Univ. Ext. Press, Saskatchewan, Canada, pp. 261–264.Google Scholar
  27. Mazza M., Iori A., Pasquini M. and Pogna N.E. 1996. Evidence for ω-gliadins encoded by the Gli-B5 locus in durum wheat (Tri-ticum turgidum spp. durum). J. Genet. & Breed. 50: 197–201.Google Scholar
  28. Nachit M.M. and Jarrah M. 1986. Association of some morphologi-cal characters to grain yield in durum wheat under Mediterranean dryland conditions. Rachis 5: 33–34.Google Scholar
  29. Payne P.I. and Lawrence G.J. 1983. Catalogue of alleles for the complex gene loci Glu-A 1, Glu-B 1 and Glu-D 1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11: 29–35.Google Scholar
  30. Payne P.I., Jackson A.E. and Holt L.M. 1984. The association between γ-gliadin 45 and gluten strength in durum wheat varieties: a direct causal effect or the result of genetic linkage?. J. Cereal Sci. 2: 73–81.Google Scholar
  31. Pecetti L. and Annicchiarico P. 1995. Efficacy of a visual assessment for drought tolerance in durum wheat improvement under dryland conditions. Cereal Res. Commun. 23: 95–101.Google Scholar
  32. Pecetti L. and Annicchiarico P. 1998. Agronomic value and plant type of Italian durum wheat cultivars from different eras of breeding. Euphytica 99: 9–15.Google Scholar
  33. Pecetti L. and Hollington P.A. 1997. Application of the CERES-Wheat simulation model to durum wheat in two diverse Mediterranean environments. Eur. J. Agron. 6: 125–139.Google Scholar
  34. Pecetti L. and Nachit M.M. 1993. Phenotypic variation of durum wheat landraces from Morocco and influence of some features of the collecting site. Agr. Med. 123: 243–251.Google Scholar
  35. Pecetti L., Boggini G. and Gorham J. 1994. Performance of durum wheat landraces in a Mediterranean environment (eastern Sicily). Euphytica 80: 191–199.Google Scholar
  36. Pecetti L., Boggini G., Doust M.A. and Annicchiarico P. 1996. Performance of durum wheat landraces from Jordan and Moroc-co in two Mediterranean environments (northern Syria and Sicily). J. Genet. & Breed. 50: 41–46.Google Scholar
  37. Perrino P. and Hammer K. 1983. Sicilian wheat varieties. Kulturpflanze 31: 227–279.Google Scholar
  38. Petersen R.G. 1985. Augmented Designs for preliminary yield trials (Revised). Rachis 4: 27–32.Google Scholar
  39. Pogna N.E. and Mellini F. 1989. Wheat storage protein genes and their use for improvement of pasta-making quality. Genet. Agr. Monograph. 8.Google Scholar
  40. Pogna N.E., Lafiandra D., Feillet P. and Autran J.C. 1988. Evidence for a direct causal effect of low molecular weight subunits of glutenins on gluten viscoelasticity. J. Cereal Sci. 7: 211–214.Google Scholar
  41. Pogna N.E., Autran J.C., Mellini F., Lafiandra D. and Feillet P. 1990. Chromosome 1B encoded gliadin and glutenin subunits in durum wheat: genetics and relationships to gluten strength. J. Cereal Sci. 11: 15–34.Google Scholar
  42. Porceddu E. 1987. Evoluzione varietale e problemi attuali del miglioramento genetico dei cereali vernini. Riv. di Agron. 21: 33–54.Google Scholar
  43. Sakoff A.N. 1960. Bulgaria In: Progressive Wheat Production. Centre d'Etude de l'Azote, Geneva, Switzerland p.p. 202–204.Google Scholar
  44. SAS Institute Inc.Cary, NC, USA 1989. SAS/STAT™ User's guide. Version 6, Fourth edition, 2 Volumes.Google Scholar
  45. Shewry P.R., Halford N.G. and Tatham A.S. 1989. The high molecular weight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. In: Miflin B.J (ed.), Oxford Surveys of Plant Molecular and Cell Biology Vol. vol 6. Oxford University Press, Oxford, UK, pp. 163–219.Google Scholar
  46. Shewry P.R., Halford N.G. and Tatham A.S. 1992. High molecular weight subunits of wheat glutenin. J. Cereal Sci. 15: 105–120.Google Scholar
  47. Simane B., Struik P.C., Nachit M.M. and Peacock J.M. 1993. Ontogenic analysis of yield components and yield stability of durum wheat in water-limited environments. Euphytica 71: 211–219.Google Scholar
  48. Sinha S.K. 1987. Drought resistance in crop plants: a critical physiological and biochemical assessment. In: Srivastava J.P., Porceddu E., Acevedo E. and Varma S. (eds), Drought Tolerance in Winter Cereals. John Wiley & Sons, Chichester, UK, pp. 349–364.Google Scholar
  49. Spagnoletti Zeuli P.L. and Qualset C.O. 1987. Geographical diversity for quantitative spike characters in a world collection of durum wheat. Crop Sci. 27: 235–241.Google Scholar
  50. Turner N.C. and Nicolas M.E. 1987. Drought resistance of wheat for light-textured soils in a Mediterranean climate. In: Srivastava J.P., Porceddu E., Acevedo E. and Varma S. (eds), rought Tolerance in Winter Cereals. John Wiley and Sons, Chichester, UK, pp. 203–216.Google Scholar
  51. Vallega J. and Zitelli G. 1975. New high yielding Italian durum wheat varieties. In: Scarascia Mugnozza G.T (ed.), Genetics and Breeding of Durum Wheat. University of Bari, Bari, Italy, pp. 373–399.Google Scholar
  52. Vavilov N.I. 1951. The Origin,Variation, Immunity and Breeding of Cultivated Plants. Chronica Botanica, Waltham, Mass., USA,.Google Scholar
  53. Vavilov N.I. 1957. World resources of cereals, leguminous seed crops and flax, and their utilization in plant breeding. The Academy of Sciences of USSR, Moscow.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • L. Pecetti
    • 1
  • M.A. Doust
    • 2
  • L. Calcagno
    • 2
  • C.N. Raciti
    • 2
  • G. Boggini
    • 3
  1. 1.Istituto Sperimentale per le Colture ForaggereLodiItaly
  2. 2.Istituto di Agronomia Generale e Coltivazioni ErbaceeCataniaItaly
  3. 3.Istituto Sperimentale per la CerealicolturaS. Angelo Lodigiano (Lodi)Italy

Personalised recommendations