Advertisement

Reading and Writing

, Volume 15, Issue 1–2, pp 5–14 | Cite as

Deficits in phoneme awareness do not arise from failures in rapid auditory processing

  • Michael Studdert-KennedyEmail author
Article

Abstract

Many studies have found that phonologicaldeficits in poor readers are associated withdeficits in speech perception. Two hypotheseshave been proposed concerning the nature of thelatter: a speech-specific and a generalauditory hypothesis. The main topic of thepaper is the general auditory hypothesis andits special form as proposed by Tallal and hercolleagues (1993). Thepaper reviews the evidence for these hypothesesand finds it to be either purely correlationalor flawed by misinterpretation of resultsand/or lack of necessary experimental controls.Moreover, a recent control study, the first ofits kind, found no support for Tallal's specialform of the general auditory hypothesis. Thepaper concludes that deficits in speechperception often observed in impaired readersare phonetic (speech-specific), not auditory,in origin.

Phoneme awareness Non speech controls Rapid auditory processing Slowed speech 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benasich, A. (1998). Temporal integration as an early predictor of speech and language development. In: C. von Euler, I. Lundberg, I. & R. Llinas (eds.), Basic mechanisms in cognition and language (pp. 123-142. New York: Elsevier.Google Scholar
  2. Benasich, A. & Tallal, P. (1996). Auditory temporal processing thresholds, habituation, and recognition memory over the 1st year, Infant Behavior and Development 19: 339-357.Google Scholar
  3. Best, C.T. & Avery, R.A. (1999). Left hemisphere advantage for click consonants is determined by linguistic significance and experience, Psychological Science 10: 65-70.Google Scholar
  4. Bishop, D.V.M., Carlyon, R.P., Deeks, J.M. & Bishop, S.J. (1999). Auditory temporal processing impairment: Neither necessary nor sufficient for causing language impairment in children, Journal of Speech, Language, and Hearing Research 42: 1295-1310.Google Scholar
  5. Blumstein, S.E., Tartter, V.C., Nigro, G. & Statlender, S. (1984). Acoustic cues for the perception of place of articulation in aphasia, Brain and Language 22: 128-149.Google Scholar
  6. Bradlow, A.R., Kraus, N., Nicol, T.G., McGee, T.J., Cunningham, J., Zecker, S.G. & Carrell, T.D. (1999). Effects of lengthened formant transition duration on discrimination and neural representation of synthetic CV syllables by normal and learning-disabled children, Journal of the Acoustical Society of America 106: 2086-2096.Google Scholar
  7. Brady, S.A. & Shankweiler, D.P. (eds.) (1991). Phonological processes in literacy. Hillsdale, NJ: Erlbaum.Google Scholar
  8. Efron, R. (1963). Temporal perception, aphasia and déjà-vu, Brain 86: 403-424.Google Scholar
  9. Hari, R. & Kiesila, P. (1996). Deficit of temporal auditory processing in dyslexic adults, Neuroscience Letters 205: 138-140.Google Scholar
  10. Kinsbourne, M., Rufo, D.T., Gamzu, E., Palmer, R.L. & Berliner, A.K. (1991). Neuropsychological deficits in adults with dyslexia, Developmental Medicine and Child Neurology 3: 763-775.Google Scholar
  11. Lacerda, F. & Lindblom, B. (1998). Some remarks on Tallal's transform in the light of emergent phonology. In: C. von Euler, I. Lundberg & R. Llinas (eds.), Basic mechanisms in cognition and language (pp. 197-222. New York: Elsevier.Google Scholar
  12. Liberman, A.M. (1998). The biology of speech: Two theories. In: C. von Euler, I. Lundberg, & R. Llinas (eds.), Basic mechanisms in cognition and language (pp. 223-229. New York: Elsevier.Google Scholar
  13. Liberman, A.M., Cooper, F.S., Shankweiler, D.P. & Studdert-Kennedy M. (1967). Perception of the speech code, Psychological Review 74: 431-461.Google Scholar
  14. Liberman, I.Y. (1973). Segmentation of the spoken word, Bulletin of the Orton Society 23: 65-77.Google Scholar
  15. Lindblom, B. (1992). Phonological units as adaptive emergents of lexical development. In: C.A. Ferguson, L. Menn & E. Stoel-Gammon (eds.), Phonological development (pp. 131-163. Timonium, MD: York Press.Google Scholar
  16. Lindblom, B., MacNeilage, P. & Studdert-Kennedy, M. (1984). Self-organizing processes and the explanation of phonological universals. In: B. Butterworth, B. Comrie & O. Dahl (eds.), Explanations of language universals (pp. 181-203. New York: Mouton.Google Scholar
  17. Locke, J. (1998). Early developmental delay: Problems for the theorist. In: C. von Euler, I. Lundberg & R. Llinas (eds.), Basic mechanisms in cognition and language (pp. 231-242. New York: Elsevier.Google Scholar
  18. McAnally, K.I., Hansen, P.C., Cornelissen, P.L. & Stein, J.F. (1997). Effect of time and frequency manipulation on syllable perception in developmental dyslexics, Journal of Speech, Language, and Hearing Research 40: 912-924.Google Scholar
  19. Merzenich, M.M., Jenkins, W.M., Johnston P., Schreiner, C., Miller, S.L. & Tallal, P. (1996). Temporal processing deficits of language-learning impaired children ameliorated by training, Science 271: 77-81.Google Scholar
  20. Merzenich, M.M., Miller, S., Jenkins, W.M., Saunders, G., Protopapas, A., Peterson, B. & Tallal, P. (1998). Amelioration of the acoustic and speech reception deficits underlying language-based learning impairments. In: C. von Euler, I. Lundberg & R. Llinas (eds.), Basic mechanisms in cognition and language (pp. 143-172. New York: Elsevier.Google Scholar
  21. Mody, M., Studdert-Kennedy, M. & Brady, S. (1997). Speech perception deficits in poor readers: Auditory processing or phonological coding?, Journal of Experimental Child Psychology 64: 199-231.Google Scholar
  22. Nicholson, R.I. & Fawcett, A.J. (1994). Reaction times and dyslexia, Quarterly Journal of Experimental Psychology: Human Experimental Psychology 47A: 29-48.Google Scholar
  23. Nittrouer, S. (1996). The relation between speech perception and phoneme awareness: Evidence from low-SES children with chronic OM, Journal of Speech and Hearing Research 39: 1059-1070.Google Scholar
  24. Nittrouer, S. (1999). Do temporal processing deficits cause phonological processing problems? Journal of Speech, Language, and Hearing Research 42: 925-942.Google Scholar
  25. Reed,M.A. (1989). Speech perception and the discrimination of brief auditory cues in reading disabled children, Journal of Experimental Child Psychology 48: 270-292.Google Scholar
  26. Riedel, K. & Studdert-Kennedy, M. (1985). Extending formant transitions may not improve aphasics' perception of stop consonant place of articulation, Brain and Language 24: 223-232.Google Scholar
  27. Schwartz, J. & Tallal, P. (1980). Rate of acoustic change may underlie hemispheric specialization for speech perception, Science 207: 1380-1381.Google Scholar
  28. Stein, J.F. & McAnally, K. (1995). Auditory temporal processing in developmental dyslexics, Irish Journal of Psychology 16: 220-228.Google Scholar
  29. Studdert-Kennedy, M. (1987). The phoneme as a perceptuomotor structure. In: A. Allport, D. MacKay, W. Prinz & E. Scheerer (eds.), Language perception and production (pp. 67-84. New York: Academic Press.Google Scholar
  30. Studdert-Kennedy, M. (1989). The early development of phonology. In: C. von Euler, H. Forssberg & H. Lagercrantz (eds.), Neurobiology of early infant behavior (pp. 287-301. New York: Stockton.Google Scholar
  31. Studdert-Kennedy, M. & Mody, M. (1995). Auditory temporal perception deficits in the reading-impaired: A critical review of the evidence, Psychonomic Bulletin and Review 2: 508-514.Google Scholar
  32. Studdert-Kennedy, M. & Shankweiler, D. (1981). Hemispheric specialization for language processes, Science 211: 960-961.Google Scholar
  33. Studdert-Kennedy, M., Mody, M. & Brady, S. (2000). Speech perception deficits in poor readers: A reply to Denenberg's critique, Journal of Learning Disabilities 33(4).Google Scholar
  34. Studdert-Kennedy, M., Liberman, A.M., Brady, S.A., Fowler, A.E., Mody, M. & Shankweiler, D.P. (1995). Lengthened formant transitions are irrelevant to the improvement of speech and language impairments, Haskins Laboratories Status Report on Speech Research SR 119/120: 35-38.Google Scholar
  35. Swisher, L. & Hirsh, I.J. (1972). Brain damage and the ordering of two temporally successive stimuli, Neuropsychologia 10: 137-152.Google Scholar
  36. Tallal, P. (1980). Auditory temporal perception, phonics and reading disabilities in children, Brain and Language 9: 182-198.Google Scholar
  37. Tallal, P. & Newcombe, F. (1978). Impairment of auditory perception and language comprehension in dysphasia, Brain and Language 5: 13-24.Google Scholar
  38. Tallal, P. & Piercy, M. (1973). Developmental aphasia: Impaired rate of nonverbal processing as a function of sensory modality, Neuropsychologia 11: 389-398.Google Scholar
  39. Tallal, P. & Piercy, M. (1974). Developmental aphasia: Rate of auditory processing and selective impairment of consonant perception, Neuropsychologia 12: 83-93.Google Scholar
  40. Tallal, P. & Piercy, M. (1975). Developmental aphasia: The perception of brief vowels and extended stop consonants, Neuropsychologia 13: 69-74.Google Scholar
  41. Tallal, P., Miller, S. & Fitch, R.H. (1993). Neurobiological basis of speech: A case for the preeminence of temporal processing. In: P. Tallal, A.M. Galaburda, R.R. Llinas & C. von Euler (eds.), Temporal information processing in the nervous system. Annals of the New York Academy of Sciences, Vol. 82 (pp. 27-47). New York: New York Academy of Sciences. Paper reprinted in Irish Journal of Psychology (1995), 16: 194-219.Google Scholar
  42. Tallal, P., Miller, S.L., Bedi, G., Byma, G., Wang, X, Nagarajan, S.S., Schreiner, C., Jenkins,W.M. & Merzenich, M.M. (1996). Language comprehension in language-learning impaired children improved with acoustically modified speech, Science 271: 81-84.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Haskins LaboratoriesNew HavenUSA

Personalised recommendations