Journal of Biomolecular NMR

, Volume 22, Issue 1, pp 65–81 | Cite as

A novel PH-CT-COSY methodology for measuring JPH coupling constants in unlabeled nucleic acids. Application to HIV-2 TAR RNA

  • Teresa Carlomagno
  • Mirko Hennig
  • James R. Williamson
Article

Abstract

A quantitative analysis of JPH scalar couplings in nucleic acids is difficult due to small couplings to phosphorus, the extreme overlap of the sugar protons and the fast relaxation of the spins involved in the magnetization transfer. Here we present a new methodology that relies on heteronuclear Constant Time Correlation Spectroscopy (CT-COSY). The three vicinal 3JPH3′, 3JPH5′ and 3JPH5′′ scalar couplings can be obtained by monitoring the intensity decay of the Pi-H3′i − 1 peak as a function of the constant time T in a 2D correlation map. The advantage of the new method resides in the possibility of measuring the two 3JPH5′ and 3JPH5′′ scalar couplings even in the presence of overlapped H5′/H5′′ resonances, since the quantitative information is extracted from the intensity decay of the P-H3′ peak. Moreover, the relaxation of the H3′ proton is considerably slower than that of the H5′/H5′′ geminal protons and the commonly populated conformations of the phosphate backbone are associated with large 3JPH3′ couplings and relatively small 3JPH5′ / H5′′. These two facts lead to optimal signal-to-noise ratio for the P-H3′ correlation compared to the P-H5′/H5′′ correlation.The heteronuclear CT-COSY experiment is suitable for oligonucleotides in the 10–15 kDa molecular mass range and has been applied to the 30mer HIV-2 TAR RNA. The methodology presented here can be used to measure P-H dipolar couplings (DPH) as well. We will present qualitative results for the measurement of P-Hbase and P-H2′ dipolar couplings in the HIV-2 TAR RNA and will discuss the reasons that so far precluded the quantification of the DPHs for the 30mer RNA.

constant time COSY dipolar couplings JPH couplings nucleic acids phosphodiester backbone relaxation effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboul-ela, F., Karn, J. and Varani, G. (1996) Nucl. Acids Res., 24, 3974–3981.Google Scholar
  2. Bevington, P.R. and Robinson D.K. (1992) Data Reduction and Error Analysis for the Physical Sciences, WCB/McGraw-Hill, U.S.A.Google Scholar
  3. Billeter, M., Neri, D., Otting, G., Qian, Y.Q. and Wüthrich, K. (1992) J. Biomol. NMR, 2, 257–274.Google Scholar
  4. Brodsky, A.S. and Williamson, J.R. (1997) J. Mol. Biol. 267, 624–639.Google Scholar
  5. Cavanagh, J. Fairbrother, W.J., Palmer, A.G. III and Skelton, N.J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego, CA, pp. 279–281.Google Scholar
  6. Clore, G.M., Murphy, E.C., Gronenborn, A.M. and Bax, A. (1998) J. Magn. Reson., 134, 164–167.Google Scholar
  7. Gotfredsen, C.H., Meissner, A., Duus, J. Ø. and Sørensen, O.W. (2000) Magn. Reson. Chem., 38, 692–695.Google Scholar
  8. Harbison, G.S. (1993) J. Am. Chem. Soc., 115, 3026–3027.Google Scholar
  9. Hennig, M. Carlomagno, T. and Williamson, J.R. (2001) J. Am. Chem. Soc., 123, 3395–3396.Google Scholar
  10. Hines, J.V., Varani, G., Landry, S.M. and Tinoco, Jr., I. (1993) J. Am. Chem. Soc., 115, 11002–11003.Google Scholar
  11. Herzfeld, J., Griffin, R.G. and Haberkorn, R.A. (1984) Biochemistry, 17, 2711–27184.Google Scholar
  12. Hu, W., Bouaziz, S., Skripkin, E. and Kettani, A. (1999) J. Magn. Reson., 139, 181–185.Google Scholar
  13. Kaikkonen, A. and Otting, G. (2001) J. Biomol. NMR, 19, 273–277.Google Scholar
  14. Lankhorst, P.P., Haasnoot, C.A., Erkelens, C. and Altona, C. (1984) J. Biomol. Struct. Dyn., 1, 1387–1405.Google Scholar
  15. Legault, P., Jucker, F.M. and Parti, A. (1995) FEBS Lett. 362, 156–160.Google Scholar
  16. Long, K.S. and Crothers, D.M. (1999) Biochemistry, 38, 10059–10069.Google Scholar
  17. Marino, J.P., Schwalbe, H., Glaser, S.J. and Griesienger, C. (1996) J. Am. Chem. Soc., 118, 4388–4395.Google Scholar
  18. Murthy, V.L., Srinivasan, R., Draper, D.E. and Rose, G.D. (1999) J. Mol. Biol., 291, 313–327.Google Scholar
  19. Norwood, T.J. (1993) J. Magn. Reson., A104, 106.Google Scholar
  20. Plavec, J. and Chattopadhyaya, J. (1995) Tetrahedron Lett., 36, 1949–1952.Google Scholar
  21. Puglisi, J.D., Tan, R., Calnan, B.J., Frankel, A.D. and Williamson, J.R. (1992) Science, 257, 76–80.Google Scholar
  22. Richter, C., Reif, B., Worner, K., Quant, S., Marino, J.P., Engels, J.W., Griesienger, C. and Schwalbe, H. (1998) J. Biomol. NMR, 12, 223–230.Google Scholar
  23. Saenger, W. (1984) Principles of Nucleic Acid Structure, Springer-Verlag, New York, NY.Google Scholar
  24. Schwalbe, H., Marino, J. P., King, G.C., Wechselberger, R., Bermel, W. and Griesienger C., (1994) J. Biomol. NMR, 4, 631–644.Google Scholar
  25. Schwalbe, H., Samstag, W., Engels, J.W., Bermel, W. and Griesienger, C. (1993) J. Biomol. NMR, 3, 479–486.Google Scholar
  26. Scott, L.G., Tolbert, T.J. and Williamson, J.R. (2000) Meth. Enzymol., 317, 18–38. 81Google Scholar
  27. Silver, M.S., Joseph, R.I. and Hoult, D.I. (1984) J. Magn. Reson., 59, 347.Google Scholar
  28. Sklenar, V. and Bax, A. (1987) J. Am. Chem. Soc., 109, 7525–7526.Google Scholar
  29. Sklenar, V., Miyashiro, H., Zon, G., Miles, H.T. and Bax, A. (1986) FEBS Lett., 208, 94–98.Google Scholar
  30. Szyperski, T., Ono, A., Fernandez, C., Iwai, H., Tate, S., Wüthrich, K. and Kainosho, M. (1997) J. Am. Chem. Soc., 119, 9901–9902.Google Scholar
  31. Tao, J. and Frankel, A.D. (1992) Proc. Natl. Acad. Sci. USA, 89, 2723–2726.Google Scholar
  32. Tao, J. and Frankel, A.D. (1993) Proc. Natl. Acad. Sci. USA, 90, 1571–1575.Google Scholar
  33. Tian, F., Bolon, P.J. and Prestegard, J.H. (1999) J. Am. Chem. Soc., 121, 7712–7713.Google Scholar
  34. Tolbert, T.J. and Williamson, J.R. (1996) J. Am. Chem. Soc., 118, 7929–7940.Google Scholar
  35. Tolbert, T.J. and Williamson, J.R. (1997) J. Am. Chem. Soc., 119, 12100–12108.Google Scholar
  36. Varani, G., Aboul-ela, F., Allain, F. and Gubser, C.C. (1995) J. Biomol. NMR, 5, 315–320.Google Scholar
  37. Vuister, G. W., Tessari, M., Karimi-Nejad, Y. and Whitehead, B. (1998) Modern Techniques in Protein NMR, Kluwer Academic/ Plenum Publishers, New York, pp. 204–212.Google Scholar
  38. Wijmenga, S.S. and van Buuren, B.N.M. (1998) Progr. Nucl. Magn. Reson. Spectrosc., 32, 87–387.Google Scholar
  39. Wu, Z. and Bax, A. (2001) J. Magn. Reson., 151, 242–252.Google Scholar
  40. Zacharias, M. and Hagerman, P.J. (1995) Proc. Natl. Acad. Sci. USA, 92, 6052–6056.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Teresa Carlomagno
    • 1
  • Mirko Hennig
    • 2
  • James R. Williamson
    • 2
  1. 1.Biophysical ChemistryGoettingenGermany
  2. 2.Department of Molecular Biology and the Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaU.S.A

Personalised recommendations