Journal of Biomolecular NMR

, Volume 22, Issue 1, pp 1–8 | Cite as

Residual dipolar couplings: Synergy between NMR and structural genomics



Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However, comprehensive association of gene products with functions also requires systematic determination of more complex protein structures and other biomolecules participating in cellular processes such as nucleic acids, and characterization of biomolecular interactions and dynamics relevant to function. Such NMR investigations are becoming more feasible, not only due to recent advances in NMR methodology, but also because structural genomics is providing valuable structural information and new experimental and computational tools. The measurement of residual dipolar couplings in partially oriented systems and other new NMR methods will play an important role in this synergistic relationship between NMR and structural genomics. Both an expansion in the domain of NMR application, and important contributions to future structural genomics efforts can be anticipated.

dynamics and function long-range constraints multi-domain proteins proteomics RNA tertiary structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Hashimi, H.M., Gorin, A., Majumdar, A. and Patel, D.J. (2001a), submitted.Google Scholar
  2. Al-Hashimi, H.M., Majumdar, A., Gorin, A., Kettani, A., Skripkin, E. and Patel, D. J. (2001b) J. Am. Chem. Soc., 123, 633–640.Google Scholar
  3. Al-Hashimi, H.M., Gosser, Y., Gorin, A., Hu, W., Majumdar, A. and Patel, D.J. (2002) J. Mol Biol., 315,95–102.Google Scholar
  4. Al-Hashimi, H.M., Valafar, H., Terrell, M., Zartler, E.R., Eidsness, M.K. and Prestegard, J.H. (2000) J. Magn. Reson., 143,402–406.Google Scholar
  5. Baker, D. and Sali, A. (2001) Science, 294,93–96.Google Scholar
  6. Bax, A., Kontaxis, G. and Tjandra, N. (2001) Meth. Enzymol., 339,127–174.Google Scholar
  7. Bewley, C.A. and Clore, G.M. (2000) J. Am. Chem. Soc., 122,6009–6016.Google Scholar
  8. Bothner-By, A.A. (1995) In Encyclopedia of Nuclear Magnetic Resonance. Grant, D.M. and Harris, R.K. (Eds.), Wiley, Chichester, pp. 2932–2938.Google Scholar
  9. Case, D.A. (1999) J. Biomol. NMR, 15, 95–102.Google Scholar
  10. Chou, J.J., Li, S.P. and Bax, A. (2000a) J. Biomol. NMR,18, 217–227.Google Scholar
  11. Chou, S.H., Tseng, Y.Y. and Chu, B.Y. (2000b) J. Biomol. NMR, 17,1–16.Google Scholar
  12. Dingley, A.J. and Grzesiek, S. (1998) J. Am. Chem. Soc., 120, 8293–8297.Google Scholar
  13. Doudna, J.A. (2000) Nat Struct Biol., 7 (Suppl), 954-956.Google Scholar
  14. Drohat, A.C., Tjandra, N., Baldisseri, D.M. and Weber, D.J. (1999) Protein Sci., 8, 800–809.Google Scholar
  15. Dyson, H.J. and Wright, P.E. (1998) Nat. Struct. Biol., 5,499–503.Google Scholar
  16. Ellis, R.J. (2001) Trends Biochem Sci., 26,597–604.Google Scholar
  17. Ferentz, A.E. and Wagner, G. (2000) Q. Rev. Biophys.,33,29–65.Google Scholar
  18. Fischer, M.W.F., Losonczi, J.A., Weaver, J.L. and Prestegard, J.H. (1999) Biochemistry, 38, 9013–9022.Google Scholar
  19. Gardner, K.H. and Kay, L.E. 1999. In Biological Magnetic Resonance, Vol. 17, Krishna, N.R. and Berliner, L.J. (Eds.), Plenum, New York, NY, pp. 27–69.Google Scholar
  20. Gohlke, H., Hendlich, M. and Klebe, G. (2000) J. Mol. Biol., 295, 337–356.Google Scholar
  21. Hermann, T. and Patel, D.J. (1999) J Mol. Biol.,294,829–849.Google Scholar
  22. Ishima, R. and Torchia, D.A. (2000) Nat. Struct. Biol., 7,740–743.Google Scholar
  23. Kay, L.E. (1998) Nat. Struct. Biol., 5,513–517.Google Scholar
  24. Kay, L.E. (2001) Meth. Enzymol., 339, 174–203.Google Scholar
  25. Koehl, P. and Levitt, M. (1999) Nat Struct Biol., 6, 108–111.Google Scholar
  26. Koppensteiner, W.A., Lackner, P., Wiederstein, M. and Sippl, M.J. (2000) J. Mol. Biol.,296,1139–1152.Google Scholar
  27. Majumdar, A. and Patel, D.J. (2001) Accounts Chem. Res. (in press). 8Google Scholar
  28. Marti-Renom, M.A., Stuart, A.C., Fiser, A., Sanchez, R., Melo, F. and Sali, A. (2000) Annu. Rev. Biophys. Biomol. Struct.,29, 291–325.Google Scholar
  29. Meiler, J., Prompers, J.J., Peti, W., Griesinger, C. and Bruschweiler, R. (2001) J. Am. Chem. Soc., 123,6098–6107.Google Scholar
  30. Mollova, E.T. and Pardi, A. (2000) Curr. Opin. Struct. Biol., 10, 298–302.Google Scholar
  31. Mollova, E.T., Hansen, M.R. and Pardi, A. (2000) J. Am. Chem. Soc., 122, 11561–11562.Google Scholar
  32. Montelione, G.T., Zheng, D., Huang, Y.J., Gunsalus, K.C. and Szyperski, T. (2000) Nat. Struct. Biol., 7 (Suppl.),982–985.Google Scholar
  33. Mumenthaler, C., Guntert, P., Braun, W. and Wuthrich, K. (1997) J. Biomol. NMR, 10, 351–362.Google Scholar
  34. Norin, M. and Sundstrom, M. (2001) Curr. Opin. Drug. Discov. Devel., 4, 284–290.Google Scholar
  35. Orengo, C.A., Pearl, F.M.G., Bray, J.E., Todd, A.E., Martin, A.C., Lo Conte, L. and Thornton, J.M. (1999) Nucl. Acids Res., 27, 275–279.Google Scholar
  36. Palmer, A.G., 3rd, Kroenke, C.D. and Loria, J.P. (2001) Meth. Enzymol., 339,204–238.Google Scholar
  37. Permi, P. and Annila, A. (2000) J. Biomol. NMR, 16, 221–227.Google Scholar
  38. Pervushin, K., Ono, A., Fernandez, C., Szyperski, T., Kainosho, M. and Wuthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95,14147–14151.Google Scholar
  39. Pervushin, K., Riek, R., Wider, G. and Wuthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371.Google Scholar
  40. Phan, A.T. (2000) J. Biomol. NMR, 16, 175–178.Google Scholar
  41. Prestegard, J.H. (1998) Nat. Struct. Biol., 5,517–522.Google Scholar
  42. Prestegard, J.H. and Kishore, A.I. (2001) Curr. Opin. Chem. Biol., 5,584–590.Google Scholar
  43. Prestegard, J.H., Al-Hashimi, H.M. and Tolman, J.R. (2000) Q. Rev. Biophys., 33,371–424.Google Scholar
  44. Prestegard, J.H., Tolman, J.R., Al-Hashimi, H.M. and Andrec, M. (1999) In Biological Magnetic Resonance, Vol. 17, Krishna, N.R. and Berliner, L.J. (Eds.), Plenum, New York, NY, pp. 311–355.Google Scholar
  45. Prestegard, J.H., Valafar, H., Glushka, J. and Tian, F. (2001) Biochemistry,40,8677–8685.Google Scholar
  46. Ram, P. and Prestegard, J.H. (1988) Biochim. Biophys. Acta, 940, 289–294.Google Scholar
  47. Ramirez, B.E. and Bax, A. (1998) J. Am. Chem. Soc., 120, 9106–9107.Google Scholar
  48. Robert, C.H. and Janin, J. (1998) J. Mol. Biol., 283, 1037–1047.Google Scholar
  49. Sali, A. (1998) Nat. Struct. Biol., 5,1029–1032.Google Scholar
  50. Sanchez, R. and Sali, A. (1998) Proc. Natl. Acad. Sci. USA,95, 13597–13602.Google Scholar
  51. Sanders, C.R. and Prosser, R.S. (1998) Struct. Fold. Des.,6,1227–1234.Google Scholar
  52. Saupe, A. (1968) Angew. Chem., Int. Ed. Engl., 7,97–112.Google Scholar
  53. Shortle, D. and Ackerman, M. S. (2001) Science, 293,487–489.Google Scholar
  54. Tian, F., Valafar, H. and Prestegard, J.H. (2001) J. Am. Chem. Soc., in press.Google Scholar
  55. Tjandra, N. and Bax, A. (1997) Science,278,1111–1114.Google Scholar
  56. Tolman, J.R. (2001) Curr. Opin. Struct. Biol.,11, 532–539.Google Scholar
  57. Tolman, J.R., Al-Hashimi, H.M., Kay, L.E. and Prestegard, J.H. (2001) J. Am. Chem. Soc.,23,1416–1424.Google Scholar
  58. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1997) Nat. Struct. Biol.,4,292–297.Google Scholar
  59. Veglia, G. and Opella, S.J. (2000) J. Am. Chem. Soc.,122, 11733–11734.Google Scholar
  60. Venters, R.A., Huang, C.C., Farmer, B.T., 2nd, Trolard, R., Spicer, L.D. and Fierke, C.A. (1995) J. Biomol. NMR,5, 339–344.Google Scholar
  61. Vold, R.R. and Prosser, R.S. (1996) J. Magn. Reson. Ser.,B113, 267–271.Google Scholar
  62. Wang, L.C., Pang, Y.X., Holder, T., Brender, J.R., Kurochkin, A.V. and Zuiderweg, E.R.P. (2001) Proc. Natl. Acad. Sci. USA 98, 7684–7689.Google Scholar
  63. Williamson, J.R. (2000) Nat. Struct. Biol.,7,834–837.Google Scholar
  64. Xu, R., Ayers, B., Cowburn, D. and Muir, T.W. (1999) Proc. Natl. Acad. Sci. USA,96,388–393.Google Scholar
  65. Yamazaki, T., Otomo, T., Oda, N., Kyogoku, Y., Uegaki, K., Ito, N., Ishino, Y. and Nakamura, H. (1998) J. Am. Chem. Soc.,120, 5591–5592.Google Scholar
  66. Yang, D.W., Venters, R.A., Mueller, G.A., Choy, W.Y. and Kay, L.E. (1999) J. Biomol. NMR,14,333–343.Google Scholar
  67. Zhou, H., Vermeulen, A., Jucker, F.M. and Pardi, A. (1999) Biopolymers, 52,168–180.Google Scholar
  68. Zidek, L., Stefl, R. and Sklenar, V. (2001) Curr. Opin. Struct. Biol., 11,275–281.Google Scholar
  69. Zweckstetter, M. and Bax, A. (2001) J Am Chem Soc.,123, 9490–9491.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Cellular Biochemistry and Biophysics ProgramMemorial Sloan-Kettering Cancer CenterNew YorkU.S.A.

Personalised recommendations