Advertisement

Foundations of Physics

, Volume 32, Issue 1, pp 77–108 | Cite as

Fundamental Units of Length and Time

  • A. N. Bernal
  • M. P. López
  • M. Sánchez
Article

Abstract

Ideal rods and clocks are defined as an infinitesimal symmetry of the spacetime, at least in the non-quantum case. Since no a priori geometric structure is considered, all the possible models of spacetime are obtained.

Keywords

Geometric Structure Fundamental Unit Infinitesimal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. N. Bernal and M. Sánchez, work in progress.Google Scholar
  2. 2.
    H. von Borzeszkowski and Michael B. Mensky, Phys. Lett. A 269, 204 (2000).Google Scholar
  3. 3.
    T. Dray, G. Ellis, C. Hellaby, and C.A. Manogue, Gen. Relat. Gravit. 29, 591 (1997).Google Scholar
  4. 4.
    J. Ehlers, “survey of general relativity,” in Relativity, Astrophysics and Cosmology, W. Israel, ed. (Reidel, Dordrecht, The Netherlands, 1973).Google Scholar
  5. 5.
    J. Ehlers, F. A. E. Pirani, and A. Schild, General Relativity, L. O'Raifeartaigh, ed. (Oxford University Press, Oxford, 1972), p. 63.Google Scholar
  6. 6.
    G. F. R. Ellis and D. R. Matravers, Gen. Relat. Gravit. 27, 777 (1995).Google Scholar
  7. 7.
    F. Embacher, Phys. Rev. D 51, 6764 (1995).Google Scholar
  8. 8.
    S. A. Hayward, Class. Quant. Grav. 9, 1851 (1992).Google Scholar
  9. 9.
    J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).Google Scholar
  10. 10.
    M. Kossowski and M. Kriele, Class. Quant. Grav. 10, 1157 (1993).Google Scholar
  11. 11.
    A. A. Logunov, Relativistic Theory of Gravity (Nova Science, New York, 1998).Google Scholar
  12. 12.
    K. B. Marathe, J. Diff. Geom. 7, 571 (1972).Google Scholar
  13. 13.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).Google Scholar
  14. 14.
    R. K. Sachs and H. H. Wu, General Relativity for Mathematicians (Springer-Verlag, New York, 1977).Google Scholar
  15. 15.
    M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 2 (Publish or Perish, Boston, 1970).Google Scholar
  16. 16.
    S. S. Stepanov, Phys. Rev. D 62, 0235071 (2000).Google Scholar
  17. 17.
    F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Scott & Foresman, Glenview, Illinois, 1971).Google Scholar
  18. 18.
    R. Zalaletdinov, R. Tavakol, and G. F. R. Ellis, Gen. Relat. Gravit. 28, 1251 (1996).Google Scholar
  19. 19.
    M. Mars and J. M. M. Senovilla, Class. Quant. Grav. 10, 1865 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • A. N. Bernal
    • 1
  • M. P. López
    • 1
  • M. Sánchez
    • 1
  1. 1.Departamento de Geometría y TopologíaUniversidad de Granada, Facultad de Ciencias, Fuentenueva s/nGranadaSpain

Personalised recommendations