Journal of Statistical Physics

, Volume 106, Issue 3–4, pp 431–476 | Cite as

Surface Tension and the Ornstein–Zernike Behaviour for the 2D Blume–Capel Model

  • Ostap Hryniv
  • Roman Kotecký


We prove existence of the surface tension in the low temperature 2D Blume–Capel model and verify the Ornstein–Zernike asymptotics of the corresponding finite-volume interface partition function.

lattice systems interface Blume–Capel model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Dobrushin, Gibbs state describing coexistence of phases for a three-dimensional Ising model, Teor. Ver. Pril. 17:619-639 (1972); English transl. in Theor. Probability Appl. 17:582-600 (1972).Google Scholar
  2. 2.
    P. Holický, R. Kotecký, and M. Zahradník, Rigid interfaces for lattice models at low temperatures, J. Statist. Phys. 50:755-812 (1988).Google Scholar
  3. 3.
    S. Pirogov and Ya. Sinai, Phase diagrams of classical lattice systems, Theoret. and Math. Phys. 25:1185-1192 (1975) and 26:39-49 (1976).Google Scholar
  4. 4.
    P. Holický, R. Kotecký, and M. Zahradník, Phase diagram of horizontally invariant Gibbs states for lattice models, Ann. Henri Poincaré, in press.Google Scholar
  5. 5.
    G. Gallavotti, The phase separation line in the two-dimensional Ising model, Commun. Math. Phys. 27:103-136 (1972).Google Scholar
  6. 6.
    M. Campanino, J. T. Chayes, and L. Chayes, Gaussian fluctuations of connectivities in the subcritical regime of percolation, Probab. Theory Related Fields 88:269-341 (1991).Google Scholar
  7. 7.
    M. Campanino and D. Ioffe, Ornstein-Zernike theory for the Bernoulli bond percolation on Zd, preprint (1999).Google Scholar
  8. 8.
    J. T. Chayes and L. Chayes, Ornstein-Zernike behaviour for self-avoiding walks at all non-critical temperatures, Commun. Math. Phys. 105:221-238 (1986).Google Scholar
  9. 9.
    D. Ioffe, Ornstein-Zernike behaviour and analyticity of shapes for self-avoiding walks on Zd, Markov Process. Related Fields 4:323-350 (1998).Google Scholar
  10. 10.
    R. L. Dobrushin, R. Kotecký, and S. B. Shlosman, Wulff Construction: A Global Shape from Local Interaction. (Translations of Mathematical Monographs, Vol. 104) (Amer. Math. Soc., 1992).Google Scholar
  11. 11.
    J. Bricmont and J. Slawny, Phase transitions in systems with a finite number of dominant ground states, J. Statist. Phys. 54:89-161 (1989).Google Scholar
  12. 12.
    J. Bricmont and J. Lebowitz, Wetting in Potts and Blume-Capel models, J. Statist. Phys. 46:1015-1029 (1987).Google Scholar
  13. 13.
    R. L. Dobrushin, A statistical behaviour of shapes of boundaries of phases, in Phase Transitions: Mathematics, Physics, Biology..., R. Kotecký, ed. (World Scientific, Singapore, 1993), pp. 60-70.Google Scholar
  14. 14.
    R. L. Dobrushin and O. Hryniv, Fluctuations of the phase boundary in the 2D Ising ferromagnet, Commun. Math. Phys. 189:395-445 (1997).Google Scholar
  15. 15.
    O. Hryniv, On local behaviour of the phase separation line in the 2D Ising model, Probab. Theory Related Fields 110:91-107 (1998).Google Scholar
  16. 16.
    R. Kotecký and D. Preiss, Cluster expansions for abstract polymer models, Commun. Math. Phys. 103:491-498 (1986).Google Scholar
  17. 17.
    D. B. Abraham and P. Reed, Interface profile of the Ising ferromagnet in two dimensions, Commun. Math. Phys. 49:35-46 (1976).Google Scholar
  18. 18.
    Y. Higuchi, On some limit theorems related to the phase separation line in the twodimensional Ising model, Z. Wahrsch. Verw. Gebiete 50:287-315 (1979).Google Scholar
  19. 19.
    J. Bricmont, J. L. Lebowitz, and C. E. Pfister, On the local structure of the phase separation line in the two-dimensional Ising system, J. Statist. Phys. 26:313-332 (1981).Google Scholar
  20. 20.
    E. Seneta, Non-negative Matrices and Markov Chains (Springer, 1981).Google Scholar
  21. 21.
    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. (Wiley, 1970).Google Scholar
  22. 22.
    N. G. de Bruijn, Asymptotic Methods in Analysis, Bibliotheca Mathematica, Vol. IV (North-Holland, 1970).Google Scholar
  23. 23.
    M. V. Fedoriuk, Asymptotics: Integrals and Series (Nauka, Moscow, 1987).Google Scholar
  24. 24.
    R. L. Dobrushin and S. B. Shlosman, Large and moderate deviations in the Ising model, in Probability Contributions to Statistical Mechanics, pp. 91-219, Adv. Soviet Math., Vol. 20 (Amer. Math. Soc., 1994).Google Scholar
  25. 25.
    R. L. Dobrushin, Perturbation methods of the theory of Gibbsian fields, in Lectures on Probability Theory and Statistics (Saint-Flour, 1994), pp. 1-66, Lecture Notes in Math., Vol. 1648 (Springer, Berlin, 1996).Google Scholar
  26. 26.
    C. Gruber and H. Kunz, General properties of polymer systems,D. Ioffe, Self-avoiding polygons: Sharp asymptotics of canonical partition functions under the fixed area constraint, preprint (2001).Google Scholar
  27. 27.
    O. Hryniv and D. Ioffe, Self-avoiding polygons: Sharp asymptotics of canonical partition functions under the fixed area constraint, preprint (2001).Google Scholar
  28. 28.
    M. Pinsky, A note on the Erdös-Feller-Pollard theorem, Amer. Math. Monthly 83:729-731 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Ostap Hryniv
    • 1
  • Roman Kotecký
    • 2
  1. 1.DMA-EPFLLausanneSwitzerland
  2. 2.CTSCharles UniversityPraha 1Czech Republic

Personalised recommendations