, Volume 111, Issue 1–3, pp 375–385 | Cite as

Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review

  • M.J. Alves
  • M.M. Coelho
  • M.J. Collares-Pereira


The Iberian minnow Leuciscus alburnoides represents a complex of diploid and polyploid forms with altered modes of reproduction. In the present paper, we review the recent data on the origin, reproductive modes, and inter-relationships of the various forms of the complex, in order to predict its evolutionary potential. The complex follows the hybrid-origin model suggested for most other asexual vertebrates. Diploid and triploid females from the southern river basins exhibit reproductive modes that cannot be conveniently placed into the categories generally recognised for these vertebrate complexes, which imply continuous shifting between forms, where genomes derived from both parental ancestors are cyclically lost, gained or replaced. Replacement of nuclear genomes allow the introduction of novel genetic material, that may compensate for the disadvantages of asexual reproduction. Contrasting with most other vertebrate complexes, L. alburnoides males are fertile and play an important role in the dynamics of the complex. Moreover, diploid hybrid males may have initiated a tetraploidization process, when a diploid clonal sperm fertilised a diploid egg. This direct route to tetraploidy by originating fish with the right constitution for normal meiosis (symmetric), may eventually lead to a new sexually reproducing polyploid species. This case-study reinforces the significance of hybridisation and polyploidy in evolution and diversification of vertebrates.

diploid-polyploid complex hybridisation Iberian cyprinid Leuciscus alburnoides meiotic hybridogenesis tetraploidization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves, M.J., M.M. Coelho & M.J. Collares-Pereira, 1997. The Rutilus alburnoides complex (Cyprinidae): evidence for a hybrid origin. J. Zool. Syst. Evol. Res. 35: 1–10.Google Scholar
  2. Alves, M.J., M.M. Coelho & M.J. Collares-Pereira, 1998. Diversity in the reproductive modes of females of the Rutilus alburnoides complex (Teleostei, Cyprinidae): a way to avoid the genetic constraints of uniparentalism. Mol. Biol. Evol. 15: 1233–1242.Google Scholar
  3. Alves, M.J., M.M. Coelho, M.J. Collares-Pereira & T.E. Dowling, 1997. Maternal ancestry of the Rutilus alburnoides complex (Teleostei, Cyprinidae) as determined by analysis of cytochrome b sequences. Evolution 51: 1584–1592.Google Scholar
  4. Alves, M.J., M.M. Coelho, M.I. Próspero & M.J. Collares-Pereira, 1999. Production of fertile unreduced sperm by hybrid males of the Rutilus alburnoides complex (Teleostei, Cyprinidae): an alternative route to genome tetraploidization in unisexuals. Genetics 151: 277–283.Google Scholar
  5. Arai, K. & M. Mukaino, 1998. Electrophoretic analysis of the diploid progenies from triploid x diploid crosses in the loach Misgurnus anguillicaudatus (Pisces: Cobitidae). J. Exp. Zool. 280: 368–374.Google Scholar
  6. Arnold, M.L., 1997. Natural Hybridization and Evolution. Oxford University Press, Oxford.Google Scholar
  7. Berger, L., 1994. Some peculiar phenomena in European water frogs. Zoologica Poloniae 39: 267–280.Google Scholar
  8. Beukeboom, L.W. & R.C. Vrijenhoek, 1998. Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J. Evol. Biol. 11: 755–782.Google Scholar
  9. Bezy, R.L., 1989. Morphological differentiation in unisexual and bisexual xantusiid lizards of the genus Lepidophyma in Central America. Herpetol. Monog. 3: 61–80.Google Scholar
  10. Bogart, J.P., 1989. A mechanism for interspecific gene exchange via all-female salamander hybrids, pp. 170–179 in Evolution and Ecology of Unisexual Vertebrates, edited by R.M. Dawley & J.P. Bogart. New York State Mus. Bull. 466, New York.Google Scholar
  11. Bogart, J.P. & L.E. Licht, 1986. Reproduction and the origin of polyploids in hybrid salamanders of the genus Ambystoma. Can. J. Genet. Cytol. 28: 605–617.Google Scholar
  12. Bogart, J.P., L.A. Lowcock, C.W. Zeyl & B.K. Mable, 1987. Genome constitution and reproductive biology of hybrid salamanders, genus Ambystoma, on Kelleys Island in Lake Erie. Can. J. Zool. 65: 2188–2201.Google Scholar
  13. Carmona, J.A., O.I. Sanjur, I. Doadrio, A. Machordom & R.C. Vrijenhoek, 1997. Hybridogenetic reproduction and maternal ancestry of polyploid Iberian fish: the Tropidophoxinellus alburnoides complex. Genetics 146: 983–993.Google Scholar
  14. Collares-Pereira, M.J., 1984. The ‘Rutilus alburnoides (Steindachner, 1866) complex’ (Pisces, Cyprinidae). I. Biometrical analysis of some Portuguese populations. Arquivos do Museu Bocage (Sér. A) 2: 111–143.Google Scholar
  15. Collares-Pereira, M.J., 1985. The ‘Rutilus alburnoides (Steindachner, 1866) complex’ (Pisces, Cyprinidae). II. First data on the karyology of a well-established diploid-triploid group. Arq. Mus. Boc. (Sér. A) 3: 69–89.Google Scholar
  16. Collares-Pereira, M.J., 1989. Hybridization in European cyprinids: evolutionary potential of unisexual populations, pp. 281–288 in Evolution and Ecology of Unisexual Vertebrates, edited by R.M. Dawley & J.P. Bogart. New York State Mus. Bull. 466, New York.Google Scholar
  17. Collares-Pereira, M.J.,M.J. Alves & M.M. Coelho, 1999. Reassessment of the generic position of the Iberian cyprinid ‘alburnoides complex': its return to the genus Leuciscus. J. Fish Biol. 54: 465–468.Google Scholar
  18. Collares-Pereira, M.J. & L. Moreira da Costa, 1999. Intraspecific and interspecific genome size variation in Iberian Cyprinidae and the problem of diploidy and polyploidy, with review of genome sizes within the family. Folia Zool. 48: 61–76.Google Scholar
  19. Collares-Pereira, M.J., M.I. Próspero, R.I. Bibéu & E.M. Rodrigues, 1998. Leuciscus (Pisces, Cyprinidae) karyotypes: transect of Portuguese populations. Gen. Mol. Biol. 21: 63–69.Google Scholar
  20. Darevsky, I.S., 1992. Evolution and ecology of parthenogenesis in reptiles, pp. 21–39 in Herpetology: Current Research on the Biology of Amphibians and Reptiles, Proc. Ist World Congress Herpetology, edited by K. Adler. Soc. Study Amphib. Rept., Oxford.Google Scholar
  21. Dawley, R.M., 1989. An introduction to unisexual vertebrates, pp. 1–18 in Evolution and Ecology of Unisexual Vertebrates, edited by R.M. Dawley & J.P. Bogart. New York State Mus. Bull. 466, New York.Google Scholar
  22. Dawley, R.M., 1992. Clonal hybrids of the common laboratory fish Fundulus heteroclitus. Proc. Natl. Acad. Sci. USA 89: 2485–2488.Google Scholar
  23. Dawley, R.M. & K.A. Goddard, 1988. Diploid-triploid mosaics among unisexual hybrids of the minnows Phoxinus eos and Phoxinus neogaeus (Pisces: Cyprinidae). Evolution 42: 649–659.Google Scholar
  24. Dawley, R.M., J.D. Rupprecht & R.J. Schultz, 1997. Genome size of bisexual and unisexual Poeciliopsis. J. Hered. 88: 249–252.Google Scholar
  25. Dowling, T.E. & C.L. Secor, 1997. The role of hybridization and introgression in the diversification of animals. Ann. Rev. Ecol. Syst. 28: 593–619.Google Scholar
  26. Goddard, K.A. & R.M. Dawley, 1990. Clonal inheritance of a diploid nuclear genome by a hybrid freshwater minnow (Phoxinus eos-neogaeus, Pisces: Cyprinidae). Evolution 44: 1052–1065.Google Scholar
  27. Goddard, K.A., O. Megwinoff, L.L. Wessner & F. Giaimo. 1998. Confirmation of gynogenesis in Phoxinus eos-neogaeus (Pisces: Cyprinidae). J. Hered. 89: 151–157.Google Scholar
  28. Goddard, K.A. & R.J. Schultz, 1993. Aclonal reproduction by polyploid members of the clonal hybrid species Phoxinus eosneogaeus (Cyprinidae). Copeia 1993: 650–660.Google Scholar
  29. Graf, J.-D. & M. Polls Pelaz, 1989. Evolutionary genetics in the Rana esculenta complex, pp. 289–301 in Evolution and Ecology of Unisexual Vertebrates, edited by R.M. Dawley & J.P. Bogart. New York State Mus. Bull. 466, New York.Google Scholar
  30. Günther, R., 1970. Der Karyotyp von Rana ridibunda Pall. und das Vorkommen von Triploidie bei Rana esculenta L. (Anura, Amphibia). Biol. Zentralbl. 89: 327–342.Google Scholar
  31. Günther, R., T. Uzzell & L. Berger, 1979. Inheritance patterns in triploid Rana ‘esculenta’ (Amphibia, Salientia). Mitt. Zool.Mus. Berlin 55: 35–57.Google Scholar
  32. Hedges, S.B., J.P. Bogart & L.R. Maxson, 1992. Ancestry of unisexual salamanders. Nature 356: 708–710.Google Scholar
  33. Hotz, H., P. Beerli & C. Spolsky, 1992. Mitochondrial DNA reveals formation of nonhybrid frogs by natural matings between hemiclonal hybrids. Mol. Biol. Evol. 9: 610–620.Google Scholar
  34. Kim, I.-S. & J.-H. Lee, 1990. Diploid-triploid hybrid complex of the spined loach Cobitis sinensis and C. longicorpus (Pisces: Cobitidae). Kor. J. Ichthyol. 7: 71–78.Google Scholar
  35. Kim, I.-S. & yE.-H. Lee, 2000. Hybridization experiment of diploidtriploid cobitid fishes, Cobitis sinensis-longicorpus complex (Pisces, Cobitidae). Folia Zool. 49: 17–22.Google Scholar
  36. Kobayasi, H. & Y. Kawasima, 1972. On the chromosomes of an allfemale population in the ginbuna, Carassius auratus langsdorfii. Jpn. Women' Univ. J. 17: 259–263.Google Scholar
  37. Kraus, F., 1989. Constraints on the evolutionary history of the unisexual salamanders of the Ambystoma laterale-texanum complex as revealed by mitochondrial DNA analysis, pp. 218–227 in Evolution and Ecology of Unisexual Vertebrates, edited by R.M. Dawley & J.P. Bogart. New York State Mus. Bull. 466, New York.Google Scholar
  38. Kraus, F., 1991. Intra-individual ploidy consistency among unisexual Ambystoma. Copeia 1991: 38–43.Google Scholar
  39. Martins, M.J., M.J. Collares-Pereira, I.G. Cowx & M.M. Coelho, 1998. Diploids v. triploids Rutilus alburnoides: spatial segregation and morphological differences. J. Fish Biol. 52: 817–828.Google Scholar
  40. Matsubara, K., K. Arai & R. Suzuki, 1995. Survival potential and chromosomes of progeny of triploid and pentaploid females in the loach, Misgurnus anguillicaudatus. Aquaculture 131: 37–48.Google Scholar
  41. Murayama, Y., M. Hijikata, K. Kojima & M. Nakakuki, 1986. The appearance of diploid-triploid and diploid-triploid-tetraploid mosaic individuals in polyploid fish, ginbuna (Carassius auratus lansdorfii). Experientia 42: 187–188.Google Scholar
  42. Nishioka, M. & H. Ohtani, 1984. Hybridogenetic reproduction of allotriploids between Japanese and European pond frogs. Zool. Sci. 1: 291–326.Google Scholar
  43. Ota, H., T. Hikida & K.-Y. Lue, 1989. Polyclony in a triploid gecko, Hemidactylus stejnegeri, from Taiwan, with notes on its bearing on the chromosomal diversity of the H. garnotii-vietnamensis complex (Sauria: Gekkonidae). Genetica 79: 183–189.Google Scholar
  44. Ota, H., T. Hikida, M. Matsui, T. Chan-Ard & J. Nabhitabhata, 1996. Discovery of a diploid population of the Hemidactylus garnotii-vietnamensis complex (Reptilia: Gekkonidae). Genetica 97: 81–85.Google Scholar
  45. Parker, E.D. Jr. & R.K. Selander, 1976. The organization of genetic diversity in the parthenogenetic lizard Cnemidophorus tesselatus. Genetics 84: 791–805.Google Scholar
  46. Parker, E.D. Jr., J.M. Walker & M.A. Paulissen, 1989. Clonal diversity in Cnemidophorus: ecological and morphological consequences, pp. 72–86 in Evolution and Ecology of Unisexual Vertebrates, edited by R.M. Dawley & J.P. Bogart. New York State Mus. Bull. 466, New York.Google Scholar
  47. Phillips, C.A., T. Uzzell, C.M. Spolsky, J.M. Serb, R.E. Szafoni & T.R. Pollowy, 1997. Persistent high levels of tetraploidy in salamanders of the Ambystoma jeffersonianum complex. J. Herpetol. 31: 530–535.Google Scholar
  48. Plötner, J. & M. Klinkhardt, 1992. Investigations on the genetic structure and the morphometry of a pure hybrid population of Rana kl. esculenta (Anura, Ranidae) in North Germany. Zool. Anz. 229: 163–184.Google Scholar
  49. Próspero, M.I. & M.J. Collares-Pereira, 2000. Nuclear DNA content variation in the diploid-polyploid Leuciscus alburnoides complex (Teleostei, Cyprinidae) assessed by flow cytometry. Folia Zool. 49: 53–58.Google Scholar
  50. Quattro, J.M., J.C. Avise & R.C. Vrijenhoek, 1991. Molecular evidence for multiple origins of hybridogenetic fish clones (Poeciliidae: Poeciliopsis). Genetics 127: 391–398.Google Scholar
  51. Quattro, J.M., J.C. Avise & R.C. Vrijenhoek, 1992. An ancient clonal lineage in the fish genus Poeciliopsis (Atheriniformes: Poeciliidae). Proc. Natl. Acad. Sci. USA 89: 348–352.Google Scholar
  52. Ráb, P., M. Rábová, J. Bohlen & S. Lusk, 2000. Genetic differentiation of the two hybrid diploid-polyploid complexes of loaches, genus Cobitis (Cobitidae) involving C. taenia, C. elongatoides and C. spp. in the Czech Republic: karyotypes and cytogenetic diversity. Folia Zool. 49 (suppl.): 55–66.Google Scholar
  53. Ráb, P. & O. Slavík, 1996. Diploid-triploid-tetraploid complex of the spined loach, genus Cobitis in Psovka Creek: the first evidence of the new species of Cobits in the ichthyofauna of the Czech Republic. Acta Univ. Carolinae Biologica 39: 201–214.Google Scholar
  54. Schartl, A., U. Hornung, I. Nanda, R. Wacker, H.-K. Müller-Hermelink, I. Schlupp, J. Parzefal, M. Schmid & M. Schartl, 1997. Susceptibility to the development of pigment cell tumors in a clone of the Amazon molly, Poecilia formosa, introduced through a microchromosome. Cancer Res. 57: 2993–3000.Google Scholar
  55. Schartl, M., I. Nanda, I. Schlupp, B. Wilde, J.T. Epplen, M. Schmid & J. Parzefall, 1995a. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature 373: 68–71.Google Scholar
  56. Schartl, M., B Wilde, I. Schlupp & J. Parzefall, 1995b. Evolutionary origin of a parthenoform, the amazon molly Poecilia formosa, on the basis of a molecular genealogy. Evolution 49: 827–835.Google Scholar
  57. Schlupp, I., I. Nanda, M. Döbler, D.K. Lamatsch, J.T. Epplen, J. Parzefall, M. Schmid & M. Schartl, 1998. Dispensable and indispensable genes in an ameiotic fish, the Amazon molly Poecilia formosa. Cytogenet. Cell. Genet. 80: 193–198.Google Scholar
  58. Schultz, R.J., 1969. Hybridization, unisexuality and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am. Nat. 103: 605–619.Google Scholar
  59. Schultz, R.J., 1977. Evolution and the ecology of unisexual fishes. Evol. Biol. 10: 277–331.Google Scholar
  60. Schultz, R.J., 1980. The role of polyploidy in the evolution of fishes, pp. 313-339 in Polyploidy: Biological Relevance, edited by W.H. Lewis. Plenum Press, New York.Google Scholar
  61. Sites, J.W. Jr., D. Peccinini-Seale, C. Moritz, J.W. Wright & W.M. Brown, 1990. The evolutionary history of the parthenogenetic Cnemidophorus lemniscatus (Sauria, Teiidae). I. Evidence for a hybrid origin. Evolution 44: 906–921.Google Scholar
  62. Spolsky, C.M., C.A. Phillips & T. Uzzell, 1992. Antiquity of clonal salamander lineages revealed by mitochondrial DNA. Nature 356: 706–708.Google Scholar
  63. Spolsky, C. & T. Uzzell, 1984. Natural interspecies transfer of mitochondrial DNA in amphibians. Proc. Natl. Acad. Sci. USA 81: 5802–5805.Google Scholar
  64. Uzzell, T., R. Günther & L. Berger, 1977. Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia). Proc. Acad. Natl. Sci. Philadelphia 12: 147–171.Google Scholar
  65. Vasil'ev, V.P., K.D. Vasil'eva & A.G. Osinov, 1989. Evolution of a diploid-triploid-tetraploid complex in fishes of the genus Cobitis (Pisces, Cobitidae), pp. 153–169 in Evolution and Ecology of Unisexual Vertebrates, edited by R.M. Dawley & J.P. Bogart. New York State Mus. Bull. 466, New York.Google Scholar
  66. Vasil'ev, V.P., A.E. Vinogradov, Y.M. Rozanov & E.D. Vasil'eva, 1999. Cellular DNA content in different forms of the bisexualunisexual complex of spined loaches of the genus Cobitis and in Luther' spined loach C. lutheri (Cobitidae). J. Ichtyhol. 39: 377–383.Google Scholar
  67. Vinogradov, A.E., L.J. Borkin, R. Günther & J.M. Rosanov, 1990. Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome 33: 619–627.Google Scholar
  68. Vrijenhoek, R.C., 1979. Factors affecting clonal diversity and coexistence. Am. Zool. 19: 549–552.Google Scholar
  69. Vrijenhoek, R.C., 1984. Ecological differentiation among clones: the frozen niche variation model, pp. 217–231 in Population Biology and Evolution, edited by K. Wöhrmann & V. Loeschcke. Springer-Verlag, Berlin.Google Scholar
  70. Vrijenhoek, R.C., 1998. Clonal organisms and the benefits of sex, pp. 151–172 in Advances in Molecular Ecology, edited by G.R. Carvalho. IOS Press, Amsterdam.Google Scholar
  71. Vrijenhoek, R.C., R.M. Dawley, C.J. Cole & J.P. Bogart, 1989. A list of the known unisexual vertebrates, pp. 19–23 in Evolution and Ecology of Unisexual Vertebrates, edited by R.M. Dawley & J.P. Bogart. New York State Mus. Bull. 466, New York.Google Scholar
  72. Zhang, Q.K. & K. Arai, 1999. Distribution and reproductive capacity of natural triploid individuals and occurrence of unreduced eggs as a cause of polyploidization in the loach, Misgurnus anguillicaudatus. Ichthyol. Res. 46: 153–161.Google Scholar
  73. Zhang, Q.K., K. Arai & M. Yamashita, 1998. Cytogenetic mechanisms for triploid and haploid egg formation in the triploid loach Misgurnus anguillicaudatus. J. Exp. Zool. 281: 608–619.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M.J. Alves
    • 1
  • M.M. Coelho
    • 2
  • M.J. Collares-Pereira
    • 2
  1. 1.Centro de Biologia Ambiental/Museu Nacional de História Natural (Museu Bocage)LisboaPortugal
  2. 2.Centro de Biologia Ambiental/Departamento de Zoologia e Antropologia, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations