Journal of Statistical Physics

, Volume 106, Issue 3–4, pp 623–634 | Cite as

Recurrence, Dimensions, and Lyapunov Exponents

  • B. Saussol
  • S. Troubetzkoy
  • S. Vaienti


We show that the Poincaré return time of a typical cylinder is at least its length. For one dimensional maps we express the Lyapunov exponent and dimension via return times.

return time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hirata, B. Saussol, and S. Vaienti, Statistics of return times: A general framework and new applications, Comm. Math. Phys. 206:3-55 (1999).Google Scholar
  2. 2.
    V. Afraimovich, Pesin's dimension for Poincaré recurrence, Chaos 7:12-20 (1997).Google Scholar
  3. 3.
    V. Penné, B. Saussol, and S. Vaienti, Dimensions for recurrence times: Topological and dynamical properties, Disc. Cont. Dyn. Sys. 4:783-798 (1998).Google Scholar
  4. 4.
    N. Haydn and S. Vaienti, The Limiting Distributions and Error Terms for Return Times of Dynamical Systems, preprint (2001).Google Scholar
  5. 5.
    J. Cassaigne, P. Hubert, and S. Vaienti, in preparation.Google Scholar
  6. 6.
    V. Afraimovich, J.-R. Chazottes, and B. Saussol, Pointwise Dimensions for Poincaré Recurrence Associated with Maps and Special Flows, preprint (2000).Google Scholar
  7. 7.
    N. Haydn, J. Luevano, G. Mantica, and S. Vaienti, Multifracatal Properties of Return Time Statistics, submitted to Phys. Rev. Lett. (2001).Google Scholar
  8. 8.
    F. Hofbauer, Local dimension for piecewise monotonic maps on the interval, Erg. Th. Dyn. Sys. 15:1119-1142 (1995).Google Scholar
  9. 9.
    L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys. 219:443-464 (2001).Google Scholar
  10. 10.
    L. Barreira and B. Saussol, Product Structure of Poincaré Recurrence, to appear in Erg. Th. Dyn. Sys.Google Scholar
  11. 11.
    H. White, Algorithmic complexity of points in a dynamical system, Erg. Th. Dyn. Sys. 13:807-30 (1993).Google Scholar
  12. 12.
    H. White, On the Algorithmic Complexity of Trajectories of Points in Dynamical Systems, Ph.D. dissertation (University of North Carolina at Chapel Hill, 1991).Google Scholar
  13. 13.
    A. Brudno, Entropy and the complexity of the trajectories of a dynamical system, Russ. Math. Surv. 2:127-51 (1983) (Engl. Trans.).Google Scholar
  14. 14.
    T. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, 1995).Google Scholar
  15. 15.
    F. Hofbauer and P. Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull. 35:84-98 (1992).Google Scholar
  16. 16.
    F. Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map on the interval, in Lyapunov Exponents, Proceedings, Oberwolfach, 1990, L. Arnold, H. Crauel, and J.-P. Eckmann, eds., Lecture Notes in Mathematics, Vol. 1486 (Springer, Berlin, 1991), pp. 227-231.Google Scholar
  17. 17.
    D. Ornstein and B. Weiss, Entropy and data compression, IEEE Trans. Inf. Th. 39:78-83 (1993).Google Scholar
  18. 18.
    I. Kontoyiannis, P. Algoet, Yu. Suhov, and A. Wyner, Nonparametric entropy esitmation for stationary processes and random fileds, with applications to English text, IEEE Trans. Inf. Th. 44:1319-1327 (1998).Google Scholar
  19. 19.
    A. Quas, An entropy esitmator for a class of infinite alphabet processes, Theor. Veroyatnost. i Primenen. 43:61-621 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • B. Saussol
    • 1
  • S. Troubetzkoy
    • 2
  • S. Vaienti
    • 3
  1. 1.LAMFA/CNRS fre 2270Université de Picardie Jules VerneAmiens Cedex 1France
  2. 2.Institut de Mathématiques de Luminy et Federation de Recherches des Unites de Mathematique de MarseilleCentre de Physique ThéoriqueMarseille Cedex 9France
  3. 3.Centre de Physique Théorique et Federation de Recherches des Unites de Mathematique de MarseillePhymat, Université de Toulon et du VarMarseille Cedex 9France

Personalised recommendations