Bulletin of Experimental Biology and Medicine

, Volume 132, Issue 4, pp 959–962

Proline-Containing Dipeptide GVS-111 Retains Nootropic Activity after Oral Administration

  • R. U. Ostrovskaya
  • T. Kh. Mirsoev
  • G. A. Romanova
  • T. A. Gudasheva
  • E. V. Kravchenko
  • C. C. Trofimov
  • T. A. Voronina
  • S. B. Seredenin
Article

Abstract

Experiments on rats trained passive avoidance task showed that N-phenyl-acetyl-L-prolyl-glycyl ethyl ester, peptide analog of piracetam (GVS-111, Noopept) after oral administration retained antiamnesic activity previously observed after its parenteral administration. Effective doses were 0.5-10 mg/kg. Experiments on a specially-developed model of active avoidance (massive one-session learning schedule) showed that GVS-111 stimulated one-session learning after single administration, while after repeated administration it increased the number of successful learners among those animals who failed after initial training. In this respect, GVS-111 principally differs from its main metabolite cycloprolylglycine and standard nootropic piracetam.

dipeptides GVS-111 passive and active avoidance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. P. Ashmarin, Science and Technology Achievements, Human and Animal Physiology [in Russian], Moscow (1988).Google Scholar
  2. 2.
    S. S. Boiko, R. U. Ostrovskaya, V. P. Zherdev, et al., Byull. Eksp. Biol. Med., 129, No. 4, 426–429 (2000).Google Scholar
  3. 3.
    D. L. Vysotsky, A. L. Vysotsky, T. A. Gudasheva, et al., Ros. Fisiol. Zhurn., 84, No. 3, 157–163 (1998).Google Scholar
  4. 4.
    T. A. Gudasheva, R. U. Ostrovskaya, G. A. Romanova, et al., Byull. Eksp. Biol. Med., 128, No. 10, 411–413 (1999).Google Scholar
  5. 5.
    T. A. Gudasheva, S. S. Trofimov, M. Yu. Kosoi, et al., Khim. Farm. Zh., 11, 18–22 (1985).Google Scholar
  6. 6.
    A. N. Inosemtsev, S. S. Trofimov, G. G. Borlikova, et al., Eksp. Klin. Farmakol., 61, No. 3, 10–12 (1998).Google Scholar
  7. 7.
    R. I. Kruglikov, Neurochemical Mechanisms of Learning and Memory, [in Russian] Moscow (1981).Google Scholar
  8. 8.
    G. Flicker and J. Drewe, J. Pept. Sci., 2, No. 4, 195–211 (1996).Google Scholar
  9. 9.
    C. Giurgea, Actual Pharmacol. (Paris), 25, 115–156 (1972).Google Scholar
  10. 10.
    T. A. Gudasheva, T. A. Voronina, R. U. Ostrovskaya, et al., Eur. J. Med. Chem., 31, 157 (1996).Google Scholar
  11. 11.
    R. U. Ostrovskaya, T. A. Gudasheva, S. S. Trofimov, et al., in: Biological Basis of Individual Sensitivity to Psychotropic Drugs, Edinburg, (1994), 79–91.Google Scholar
  12. 12.
    R. U. Ostrovskaya, T. A. Gudasheva, S. S. Trofimov, et al., Behav. Pharmacol., 8, 68–69 (1999).Google Scholar
  13. 13.
    M. Sansone and A. Oliverio, Progr. Neuropsychopharmacol. Biol. Psychiatry, 13, 89–97 (1989).Google Scholar
  14. 14.
    Z. Speiser and F. G. Galafaro, Neuropharmacology, 28, No. 12, 1325–1332 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • R. U. Ostrovskaya
    • 1
    • 2
  • T. Kh. Mirsoev
    • 1
    • 2
  • G. A. Romanova
    • 1
    • 2
  • T. A. Gudasheva
    • 1
    • 2
  • E. V. Kravchenko
    • 1
    • 2
  • C. C. Trofimov
    • 1
    • 2
  • T. A. Voronina
    • 1
    • 2
  • S. B. Seredenin
    • 1
    • 2
  1. 1.Institute of PharmacologyRussia
  2. 2.Institute of General Pathology and PathophysiologyRussian Academy of Medical ScienceMoscow

Personalised recommendations