Plant Molecular Biology

, Volume 47, Issue 6, pp 795–804 | Cite as

An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana

  • Maria-Victoria García-Ortiz
  • Rafael R. Ariza
  • Teresa Roldán-Arjona


Repair of the ubiquitous mutagenic lesion 7,8-dihydro-8-oxoguanine (8-oxoG) is initiated in eukaryotes by DNA glycosylases/lyases, such as yeast Ogg1, that do not share significant sequence identity with their prokaryotic counterparts, typified by Escherichia coli MutM (Fpg) protein. The unexpected presence of a functional mutM orthologue in the model plant Arabidopsis thaliana has brought into question the existence of functional OGG1 orthologues in plants. We report here the cDNA cloning, expression and functional characterization of AtOGG1, an Arabidopsisthaliana gene widely expressed in different plant tissues which encodes a 40.3 kDa protein with significant sequence identity to yeast and human Ogg1 proteins. Purified AtOgg1 enzyme specifically cleaves duplex DNA containing an 8-OxoG:C mispair, and the repair reaction proceeds through an imine intermediate characteristic of all bifunctional DNA glycosylases/lyases. Consistent with its in vitro activity, expression of AtOGG1 suppresses the mutator phenotype of an E. coli strain deficient in 8-oxoG repair. Our results suggest that AtOgg1 is an structural and functional homologue of Ogg1 and establish the presence of two distinct 8-oxoG repair enzymes in Arabidopsis.

Arabidopsisthaliana 7,8-dihydro-8-oxoguanine DNA repair DNA glycosylase/lyase mutagenesis reactive oxygen species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aburatani, H., Hippo, Y., Ishida, T., Takashima, R., Matsuba, C., Kodama, T., Takao, M., Yasui, A., Yamamoto, K., Asano, M., Fukasawa, K., Yoshinari, T., Inoue, H., Ohtsuka, E. and Nishimura, S. 1997. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrim-idinic lyase, a functional MutM homolog. Cancer Res. 57: 2151–2156.Google Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.Google Scholar
  3. Arai, K., Morishita, K., Shinmura, K., Kohno, T., Kim, S.R., Nohmi, T., Taniwaki, M., Ohwada, S. and Yokota, J. 1997. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene 14: 2857–2861.Google Scholar
  4. Bhagwat, M. and Gerlt, J.A. 1996. 3′-and5′-strand cleavage reac-tions catalyzed by the Fpg protein from Escherichia coli occur via successive β-andδ-elimination mechanisms, respectively. Biochemistry 35: 659–665.Google Scholar
  5. Bjoras, M., Luna, L., Johnsen, B., Hoff, E., Haug, T., Rognes, T. and Seeberg, E. 1997. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 16: 6314–6322.Google Scholar
  6. Boiteux, S., Gajewski, E., Laval, J. and Dizdaroglu, M. 1992. Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensi-tization. Biochemistry 31: 106–110.Google Scholar
  7. Bruner, S.D., Norman, D.P. and Verdine, G.L. 2000. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403: 859–866.Google Scholar
  8. Castaing, B., Geiger, A., Seliger, H., Nehls, P., Laval, J., Zelwer, C. and Boiteux, S. 1993. Cleavage and binding of a DNA fragment containing a single 8-oxoguanine by wild type and mutant FPG proteins. Nucl. Acids Res. 21: 2899–2905.Google Scholar
  9. Cheng, K.C., Cahill, D.S., Kasai, H., Nishimura, S. and Loeb, L.A. 1992. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J. Biol. Chem. 267: 166–172.Google Scholar
  10. Cokol, M., Nair, R. and Rost, B. 2000. Finding nuclear localization signals. EMBO Rep. 1: 411–415.Google Scholar
  11. Deutsch, W.A., Yacoub, A., Jaruga, P., Zastawny, T.H. and Diz-daroglu, M. 1997. Characterization and mechanism of action of Drosophila ribosomal protein S3 DNA glycosylase activity for the removal of oxidatively damaged DNA bases. J. Biol. Chem. 272: 32857–32860.Google Scholar
  12. Dherin, C., Dizdaroglu, M., Doerflinger, H., Boiteux, S. and Radi-cella, J.P. 2000. Repair of oxidative DNA damage in Drosophila melanogaster: identification and characterization of dOgg1, a second DNA glycosylase activity for 8-hydroxyguanine and formamidopyrimidines. Nucl. Acids Res. 28: 4583–4592.Google Scholar
  13. Dizdaroglu, M. 1999. Mechanisms of oxidative DNA damage; lesions and their measurement. In: M. Dizdaroglu and A.E. Karakaya (Eds.) Advances in DNA Damage and Repair: Oxy-gen Radical Effects, Cellular Protection, and Biological Con-sequences, Kluwer Academic Publishers, Dordrecht, Netherlands Plenum, New York, pp. 67–87.Google Scholar
  14. Dodson, M.L., Michaels, M.L. and Lloyd, R.S. 1994. Unified cat-alytic mechanism for DNA glycosylases. J. Biol. Chem. 269: 32709–32712.Google Scholar
  15. Eisen, J.A. and Hanawalt, P.C. 1999. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res. 435: 171–213.Google Scholar
  16. Girard, P.M., Guibourt, N. and Boiteux, S. 1997. The Ogg1 protein of Saccharomyces cerevisia e: a 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue for catalytic activity. Nucl. Acids Res. 25: 3204–3211.Google Scholar
  17. Karahalil, B., Girard, P.M., Boiteux, S. and Dizdaroglu, M. 1998. Substrate specificity of the Ogg1 protein of Saccharomyces cerevisia e: excision of guanine lesions produced in DNA by ion-izing radiation-or hydrogen peroxide/metal ion-generated free radicals. Nucl. Acids Res. 26: 1228–1233.Google Scholar
  18. Krokan, H.E., Standal, R. and Slupphaug, G. 1997. DNA glyco-sylases in the base excision repair of DNA. Biochem. J. 325: 1–16.Google Scholar
  19. Le Page, F., Kwoh, E.E., Avrutskaya, A., Gentil, A., Leadon, S.A., Sarasin, A. and Cooper, P.K. 2000. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101: 159–171.Google Scholar
  20. Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709–715.Google Scholar
  21. Lu, R., Nash, H.M. and Verdine, G.L. 1997. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 7: 397–407.Google Scholar
  22. Maki, H. and Sekiguchi, M. 1992. MutT protein specifically hy-drolyses a potent mutagenic substrate for DNA synthesis. Nature 355: 273–275.Google Scholar
  23. McCullough, A.K., Dodson, M.L. and Lloyd, R.S. 1999. Initiation of base excision repair: glycosylase mechanisms and structures. Annu. Rev. Biochem. 68: 255–285.Google Scholar
  24. Michaels, M.L., Cruz, C., Grollman, A.P. and Miller, J.H. 1992. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc. Natl. Acad. Sci. USA 89: 7022–7025.Google Scholar
  25. Michaels, M.L. and Miller, J.H. 1992. The GO system pro-tects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J. Bact. 174: 6321–6325.Google Scholar
  26. Moriya, M. 1993. Single-stranded shuttle phagemid for mutagene-sis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C →T.A transversions in simian kidney cells. Proc. Natl. Acad. Sci. USA 90: 1122–1126.Google Scholar
  27. Moriya, M., Ou, C., Bodepudi, V., Johnson, F., Takeshita, M. and Grollman, A.P. 1991. Site-specific mutagenesis using a. gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. col i. Mutat. Res. 254: 281–288.Google Scholar
  28. Nash, H.M., Bruner, S.D., Scharer, O.D., Kawate, T., Addona, T.A., Spooner, E., Lane, W.S. and Verdine, G.L. 1996. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 6: 968–980.Google Scholar
  29. Ohtsubo, T., Matsuda, O., Iba, K., Terashima, I., Sekiguchi, M. and Nakabeppu, Y. 1998. Molecular cloning of AtMMH, an Ara-bidopsis thaliana ortholog of the Escherichia coli mutM gene, and analysis of functional domains of its product. Mol. Gen. Genet. 259: 577–590.Google Scholar
  30. Radicella, J.P., Dherin, C., Desmaze, C., Fox, M.S. and Boiteux, S. 1997. Cloning and characterization of hOGG1, a human ho-molog of the OGG1 gene of Saccharomyces cerevisia e.Proc. Natl. Acad. Sci. USA 94: 8010–8015.Google Scholar
  31. Roldan-Arjona, T., Wei, Y.F., Carter, K.C., Klungland, A., Anselmino, C., Wang, R.P., Augustus, M. and Lindahl, T. 1997. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA gly-cosylase. Proc. Natl. Acad. Sci. USA 94: 8016–8020.Google Scholar
  32. Rosenquist, T.A., Zharkov, D.O. and Grollman, A.P. 1997. Cloning and characterization of a mammalian 8-oxoguanine DNA glyco-sylase. Proc. Natl. Acad. Sci. USA 94: 7429–7434.Google Scholar
  33. Sakumi, K., Furuichi, M., Tsuzuki, T., Kakuma, T., Kawabata, S., Maki, H. and Sekiguchi, M. 1993. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J. Biol. Chem. 268: 23524–23530.Google Scholar
  34. Shibutani, S., Takeshita, M. and Grollman, A.P. 1991. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349: 431–434.Google Scholar
  35. Slupska, M.M., Luther, W.M., Chiang, J.H., Yang, H. and Miller, J.H. 1999. Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J. Bact. 181: 6210–6213.Google Scholar
  36. Snead, M.A., Alting-Mess, M.A. and Short, J.M. 1997. Clone exci-sion methods for the Lambda ZAP-based vectors. In: I.G. Cowell and C.A. Austin (Eds.) Methods in Molecular Biology, Vol. 69: cDNA Library Protocols, Humana Press, Totowa, NJ, pp. 53–60.Google Scholar
  37. Soni, R. and Murray, A.H. 1994. Isolation of intact DNA and RNA from plant tissues. Anal. Biochem. 218: 474–476.Google Scholar
  38. Studier, F.W., Rosenberg, A.H., Dunn, J.J. and Dubendorff, J.W. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Meth. Enzymol. 185: 60–89.Google Scholar
  39. Tchou, J., Kasai, H., Shibutani, S., Chung, M.H., Laval, J., Grollman, A.P. and Nishimura, S. 1991. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl. Acad. Sci. USA 88: 4690–4694.Google Scholar
  40. Thomas, D., Scot, A.D., Barbey, R., Padula, M. and Boiteux, S. 1997. Inactivation of OGG1 increases the incidence of G.C →T.A transversions in Saccharomyces cerevisia e: evidence for en-dogenous oxidative damage to DNA in eukaryotic cells. Mol. Gen. Genet. 254: 171–178.Google Scholar
  41. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.Google Scholar
  42. van der Kemp, P.A., Thomas, D., Barbey, R., de Oliveira, R. and Boiteux, S. 1996. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisia e, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc. Natl. Acad. Sci. USA 93: 5197–5202.Google Scholar
  43. Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. and Meyerowitz, E.M. 1992. LEAFY controls floral meristem iden-tity in Arabidopsi s. Cell 69: 843–859.Google Scholar
  44. Wood, M.L., Dizdaroglu, M., Gajewski, E. and Essigmann, J.M. 1990. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29: 7024–7032.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Maria-Victoria García-Ortiz
    • 1
  • Rafael R. Ariza
    • 1
  • Teresa Roldán-Arjona
    • 1
  1. 1.Departamento de Genética, Facultad de CienciasUniversidad de CórdobaCórdobaSpain

Personalised recommendations