Journal of Chemical Ecology

, Volume 28, Issue 1, pp 1–14 | Cite as

Hydroquinone: A General Phagostimulating Pheromone in Termites

  • Judith Reinhard
  • Michael J. Lacey
  • Fernando Ibarra
  • Frank C. Schroeder
  • Manfred Kaib
  • Michael Lenz

Abstract

The organization of termite societies depends predominantly on intraspecific chemical signals (pheromones) produced by exocrine glands, which induce and modulate individual behavioral responses. Here, the saliva-producing labial glands of termites were investigated with respect to their pheromonal role in communal food exploitation of termite colonies. From these glands, we identified for the first time hydroquinone (1,4-dihydroxybenzene) as a phagostimulating pheromone in the Australian termite species Mastotermes darwiniensis. Hydroquinone is released from the labial glands of termite workers and applied onto the food. It stimulates nestmates to feed at the spot of application and is, thus, employed to mark feeding sites. No synergistic effect with other identified labial gland compounds, such as glucose, inositol, and arbutin, was evident. Significantly, we show that termite species from all over the world, irrespective of taxonomic position and biological traits, produce and employ hydroquinone as phagostimulating signal. The use of the same chemical signal throughout an order is a unique phenomenon, not reported before in animals. Its possible biosynthetic pathway, ecological significance, and evolution are discussed.

termites pheromones feeding stimulation labial glands hydroquinone arbutin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abe, T. 1987. Evolution of life types in termites, pp. 128–148, in S. Kawano, J. H. Connell, and T. Hidaka (eds.). Evolution, Coadaptation and Biotic Communities. University of Tokyo Press, Tokyo, Japan.Google Scholar
  2. Ahmad, S. A. and Hokins, T. L. 1993. β-Glucosylation of plant phenolics by phenol-βglucosyltransferase in larval tissues of the tobacco hornworm Manduca sexta (L.). Insect Biochem. Mol. Biol. 23:581–589.Google Scholar
  3. Ambudkar, I. S. 2000. Regulation of calcium in salivary gland secretion. Crit. Rev. Oral Biol. Med. 11:4–25.Google Scholar
  4. Becker, G. 1970. Reticulitermes (Ins., Isopt.) in Mittel-andWesteuropa. Z. Angew. Entomol. 65:268–278.Google Scholar
  5. Berridge, M. J. 1997. The 1996 Massry Prize. Inositol triphosphate and calcium: two interacting second messengers. Am. J. Nephrol. 17:1–11.Google Scholar
  6. Borges, M., Zarbin, P. H. G., Ferreira, J. T. B., and Da Costa, M. L.M. 1999. Pheromone sharing: Blends based on the same compounds for Euschistus heros and Piezodorus guildinii. J. Chem. Ecol. 25:629–634.Google Scholar
  7. Brandl, R., Bagine, R. N. K., and Kaib, M. 1996. The distribution of Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae) and its termitophile Paraclystis (Lepidoptera: Tineidae) in Kenya: Its importance for understanding east African biogeography. 1Glob. Ecol. Biogeogr. Lett. 5:143–148.Google Scholar
  8. Brian, M. V. 1983. Social Insects: Ecology and Behavioral Biology. Chapman and Hall, London, England.Google Scholar
  9. Brunmark, A. and Cadenas, E. 1989. Redox and addition chemistry of quinoid compounds and its biological implications. Free Radic. Biol. Med. 7:435–477.Google Scholar
  10. Costa-Leonardo, A. M. and Cruz-Landim, C. 1991. Morphology of the salivary gland acini in Grigiotermes bequaerti (Isoptera: Termitidae: Apicotermitinae). Entomol. Gen. 16:13–21.Google Scholar
  11. Grass´e, P.-P. 1982. Termitologia, Vol. 1. Masson, Paris, France.Google Scholar
  12. Grass´e, P.-P. 1986. Termitologia, Vol. 3. Masson, Paris, France.Google Scholar
  13. Harris, W. V. 1968. African termites of the genus Schedorhinotermes (Isoptera: Rhinotermitidae) and associated termitophiles (Lepidoptera: Tineidae). Proc. R. Entomol Soc. London 37:103–113.Google Scholar
  14. Hewitt, P. H., Nel, J. J. C., and Schoeman, I. 1971. Influence of group size on water imbibition by Hodotermes mossambicus alate termites. J. Insect Physiol. 17:587–600.Google Scholar
  15. Hogan, M., Veivers, P. C., Slaytor, M., and Czolij, R. T. 1988. The site of cellulose breakdown in higher termites (Nasutitermes walkeri and Nasutitermes exitiosus). J. Insect Physiol. 34: 891–899.Google Scholar
  16. Howard, R., Matsumura, F., and Coppel, H. C. 1976. Trail-following pheromones of the Rhinotermitidae: Approaches to their authentication and specificity. J. Chem. Ecol. 2:147–166.Google Scholar
  17. Inoue, T., Murashima, K., Azuma, J. I., Sugimoto, A., and Slaytor, M. 1997. Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J. Insect Physiol. 43:235–242.Google Scholar
  18. Itakura, S., Tanaka, H., and Enoki, A. 1997. Distribution of cellulases, glucose and related substances in the body of Coptotermes formosanus. Mater. Org. 31:17–29.Google Scholar
  19. Kaib, M. 1999. Termites, pp. 329–353, in J. Hardie and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Wallingford.Google Scholar
  20. Kaib, M. and Brandl, R. 1992. Distribution, geographic variation and between-colony compatibility of Schedorhinotermes lamanianus inKenya (Isoptera: Rhinotermitidae), pp. 121–131, inJ. BILLEN (ed.). Biology and Evolution of Social Insects. Leuven University Press, Leuven.Google Scholar
  21. Kaib, M. and Ziesmann, J. 1992. The labial gland in the termite Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae): Morphology and function during communal food exploitation. Insectes Soc. 39:373–384.Google Scholar
  22. Kaib, M., Bruinsma, O., and Leuthold, R. H. 1982. Trail-following in termites: Evidence for a multicomponent system. J. Chem. Ecol. 8:1193–1205.Google Scholar
  23. Kambhampati, S. 1995. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proc. Natl. Acad. Sci. USA 92:2017–2020.Google Scholar
  24. Kreitsberg, Z. N. and Ekabsone, M. Y. 1973. Investigation of wood destroyed by enzymes. X. Change in the concentration of paramagnetic centres in biolignins of spruce and birch after the treatment with alkali. Khim. Drev. 14:119–122.Google Scholar
  25. Martin, M. M. and Martin, J. S. 1978. Cellulose digestion in the midgut of the fungusgrowing termite Macrotermes natalensis: The role of acquired digestive enzymes. Science 119: 1453–1455.Google Scholar
  26. Maschwitz, U. and Tho, Y. P. 1974. Chinone alsWehrsubstanzen bei einigen orientalischen Macrotermitinen. Insectes Soc. 21:231–234.Google Scholar
  27. Mednikova, T. K. 1991. Effect of caste differences on salivary gland functions in the termite Anacanthotermes ahngerianus. Zh. Evol. Biokhim. Fiziol. 27:86–91.Google Scholar
  28. Moore, B. P. 1968. Studies on the chemical composition and function of the cephalic gland secretion in Australian termites. J. Insect Physiol. 14:33–39.Google Scholar
  29. Noirot, C. 1969. Glands and secretions, pp. 89–123, in K. Krishna and F. Weesner (eds.). Biology of the Termites. Academic Press, New York.Google Scholar
  30. Noirot, C. 1992. Fromwood-to humus-feeding: An important trend in termite evolution, pp. 107–119, in J. Billen (ed.). Biology and Evolution of Social Insects. Leuven University Press, Leuven.Google Scholar
  31. Norris, D.M. 1970. Quinol stimulation and quinone deterrency of gustation by Scolytus multistriatus (Coleoptera: Scolytidae). Ann. Entomol Soc. Am. 63:476–478.Google Scholar
  32. Norris, D. M. 1976. Physico-chemical aspects of the effects of certain phytochemicals on insect gustation. Symp. Biol. Hung. 16:197–201.Google Scholar
  33. Olagbemiro, T. O., Lajide, L., Sani, K. M., and Staddon, B. W. 1988. 2-Hydroxy-5-methyl-1,4-benzoquinone from the salivary gland of the soldier termites Odontotermes magdalenae. Experientia 44:1022–1024.Google Scholar
  34. Oliver, A. E., Hincha, D. K., Crowe, L. M., and Crowe, J. H. 1998. Interactions of arbutin with dry and hydrated bilayers. Biochim. Biophys. Acta–Biomembranes 1370:87–97.Google Scholar
  35. Pasteels, J. and Bordereau, C. 1998. Releaser pheromones in termites, pp. 193–215, in R. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.). Pheromone Communication in Social Insects—Ants, Wasps, Bees, and Termites. Westview Press, Boulder. Colorado.Google Scholar
  36. Reinhard, J. 1998. Nahrungssuche und Nahrungsausbeute der Erdtermite Reticulitermes santonensis: Rolle chemischer Signale. BITÖK-Verlag, Bayreuth.Google Scholar
  37. Reinhard, J. and Kaib, M. 1995. Interaction of pheromones during food exploitation by the termite Schedorhinotermes lamanianus. Physiol. Entomol. 20:266–272.Google Scholar
  38. Reinhard, J. and Kaib, M. 2001a. Thin layer chromatography assessing feeding stimulation by labial gland secretion compared to synthetic chemicals in the subterranean termite Reticulitermes santonensis. J. Chem. Ecol. 27:175–187.Google Scholar
  39. Reinhard, J. and Kaib, M. 2001b. Food exploitation in termites: Indication for a general feeding stimulating signal in labial gland secretion of Isoptera.J. Chem. Ecol. 27:189–201.Google Scholar
  40. Reinhard, J., Hertel, H., and Kaib, M. 1997a. Feeding stimulating signal in labial gland secretion of the subterranean termite Reticulitermes santonensis. J. Chem. Ecol. 23:2371–2381.Google Scholar
  41. Reinhard, J., Hertel, H., and Kaib, M. 1997b. Systematic search for food in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Insectes Soc. 44:147–158.Google Scholar
  42. Reinhard, J., Lacey, M. J., and Lenz, M. Application of the natural phagostimulant hydroquinone in bait systems for termite management (Isoptera). Sociobiology (in press).Google Scholar
  43. Schedel, A. and Kaib, M. 1987. Polyethism during foraging in Schedorhinotermes lamanianus in unprotected areas: The role of exocrine glands, p. 416, in J. Eder and H. Rembold (eds.). Chemistry and Biology of Social Insects. Verlag J. Peperny, Munich.Google Scholar
  44. Schlatterer, C. and Schaloske, R. 1996. Calmidazolium leads to an increase in the cytosolic Ca2C concentration in Dictyostelium discoideum by induction of Ca2C release from intracellular stores and influx of extracellular Ca2+. Biochem. J. 313:661–667.Google Scholar
  45. Stryer, L. 1995. Biochemistry, 4th ed. Freeman, New York.Google Scholar
  46. Tokuda, G., Watanabe, H., Matsumoto, T., and Noda, H. 1997. Cellulose digestion in the woodeating higher termite, Nasutitermes takasagoensis (Shiraki): Distribution of cellulases and properties of endo-β-1,4-glucanase. Zool. Sci. 14:83–93.Google Scholar
  47. Veivers, P. C., Musca, A. M., O'Brien, R. W., and Slaytor, M. 1982. Digestive enzymes of the salivary glands and gut of Mastotermes darwiniensis. Insect Biochem. 12:35–40.Google Scholar
  48. Veivers, P. C., MÜhlemann, R., Slaytor, M., Leuthold, R. H., and Bignell, D. E. 1991. Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjöstedt. J. Insect Physiol. 37:675–682.Google Scholar
  49. Zar, J. H. 1974. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Judith Reinhard
    • 1
  • Michael J. Lacey
    • 1
  • Fernando Ibarra
    • 2
  • Frank C. Schroeder
    • 3
  • Manfred Kaib
    • 4
  • Michael Lenz
    • 1
  1. 1.CSIRO EntomologyCanberraAustralia
  2. 2.Institut für Organische ChemieUniversität HamburgHamburgGermany
  3. 3.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  4. 4.Lehrstuhl für TierphysiologieUniversität BayreuthBayreuthGermany

Personalised recommendations