Computational & Mathematical Organization Theory

, Volume 7, Issue 4, pp 275–285 | Cite as

A Faster Katz Status Score Algorithm

  • Kurt C. Foster
  • Stephen Q. Muth
  • John J. Potterat
  • Richard B. Rothenberg


A new graph theoretical algorithm to calculate Katz status scores reduces computational complexity from time O(n3) to O(n + m). Randomly-generated graphs as well as data from a large empiric study are used to test the performance of two commercial network analysis packages (GRADAP and UCINET V), compared to the performance achieved by the authors' algorithm, implemented in Visual Basic.

graph theory centrality rank prestige influence Katz status 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acton, F.S. (1990), Numerical Methods that Work. The Mathematical Association of America, Washington D.C., Vol.8, pp.211–217.Google Scholar
  2. Bonacich, P. (1972), “Factoring and Weighting Approaches to Status Scores and Clique Identification, ” Journal of Mathematical Sociology, 2, 113–120.Google Scholar
  3. Brandes, U. (2000), “Faster Evaluation of Shortest-Path Based Centrality Indices, ” Konstanzer Schriften in Mathematik und Informatik, 120.Google Scholar
  4. Borgatti, S.P., M.G. Everett and L.C. Freeman (1999), Ucinet 5.0 Version 1.00 for Windows: Software for Social Network Analysis. Natick: Analytic Technologies.Google Scholar
  5. Forsythe, G.E., M.A. Malcolm and C.B. Moler (1967), Computer Solution of Linear Algebraic Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ, ch. 17.Google Scholar
  6. Freeman, L.C. (1978), “Centrality in Social Networks: Conceptual Clarification, ” Social Networks, 1, 215–239.Google Scholar
  7. Friedkin, N.E. (1991), “Theoretical Foundations for Centrality Measures, ” American Journal of Sociology, 96(6), 1478–1504.Google Scholar
  8. Gershgorin, S.A. (1931), Bull Acad Sciences de l'URRS, Classe mathém., 7-e série, Leningrad, (p.749. Cited in Kreyzig I., (1972), Advanced Engineering Mathematics, 3rd ed.), Section 18.12, Theorem 1.Wiley, New York.Google Scholar
  9. Hoede, C. (1978), “A New Status Score a Social Network, ” Twente University Department of Applied Mathematics (Memorandum no. 243).Google Scholar
  10. Inter-University Project Group of the Universities of Amsterdam, Groningen, Nijmegen, and Twente (1989), GRADAP, Graph Definition and Analysis Package. ProGamma, Groningen, The Netherlands.Google Scholar
  11. Katz, L. (1953), “A New Status Index Derived from Sociometric Analysis, ” Psychometrika, 18, 39–43.Google Scholar
  12. Kučera, L. (1990), Combinatorial Algorithms IOP, Bristol, UK, 91–128 (in English).Google Scholar
  13. Leik, R.K. and B.F. Meeker (1975), Mathematical Sociology. Prentice-Hall, Englewood Cliffs, NJ, chapter 5.Google Scholar
  14. Microsoft Corporation (1995), Visual Basic 6.0 Professional Edition, Scholar
  15. Microsoft Corporation (1996), Microsoft Windows NT Workstation Version 4.0, document number 69396-0696.Google Scholar
  16. Nash, J.C. (1990), Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd ed. IOP, Bristol, UK, 97–101 and 119–141.Google Scholar
  17. Richards, W.D. and A.J. Seary (2000), “Eigen Analysis of Networks, ” Journal of Social Structure, 1(2), ( Scholar
  18. Rosenthal, N., R. Karant, M. Ethier and M. Fingrutd (1987), “Centrality Analysis for Historians, ” Historical Methods, 20(2), 53–62.Google Scholar
  19. Rothenberg, R.B., D.E. Woodhouse, J.J. Potterat, S.Q. Muth, W.W. Darrow, A.S. Klovdahl (1995), “Social Networks in Disease Transmission: The Colorado Springs Study, ” in R.H. Needle, S.G. Genser and R.T. Trotter II, (eds.) Social Networks, Drug Abuse and HIV Transmission, National Institute on Drug Abuse Research Monograph no. 151 (NIH Publication no. 95-3889), pp. 3–19.Google Scholar
  20. Rothenberg, R.B., J.J. Potterat, D.E. Woodhouse, W.W. Darrow, S.Q. Muth, A.S. Klovdahl (1995), “Choosing a Centrality Measure: Epidemiologic Correlates in the Colorado Springs Study of Social Networks, ” Social Networks, 17, 273–297.Google Scholar
  21. Rothenberg, R.B., J.J. Potterat, D.E. Woodhouse, S.Q. Muth, W.W. Darrow, A.S. Klovdahl (1998), “Social Network Dynamics and HIV Transmission, ” AIDS, 12, 1529–1536.Google Scholar
  22. SAS Institute Inc. (1985), SAS/IML User's Guide for Personal Computers, Version 6 ed., Cary, NC.Google Scholar
  23. Stephenson, K. and M. Zelen (1989), “Rethinking Centrality: Methods and Examples, ” Social Networks, 11, 1–37.Google Scholar
  24. Woodhouse, D.E., R.B. Rothenberg, J.J. Potterat, W.W. Darrow, S.Q. Muth, A.S. Klovdahl, H.P. Zimmerman, H.L. Rogers, T.S. Maldonado, J.B. Muth, J.U. Reynolds (1994), “Mapping a Social Network of Heterosexuals at High Risk of Human Immunodeficiency Virus Infection, ” AIDS, 8, 1331–1336.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kurt C. Foster
    • 1
  • Stephen Q. Muth
    • 1
  • John J. Potterat
    • 2
  • Richard B. Rothenberg
    • 3
  1. 1.Private ConsultantsColorado SpringsUSA
  2. 2.El Paso County Department of HealthColorado SpringsUSA
  3. 3.Emory University School of MedicineAtlantaUSA

Personalised recommendations