, Volume 112, Issue 1, pp 339–357 | Cite as

On morphological clocks and paleophylogeography: towards a timescale for Sorex hybrid zones

  • P. David Polly


Phylogeography – the study of within-species phylogenetic and geographic divergence – has been primarily the domain of molecular evolutionists because molecular markers record population structure on smaller scales than do traditional morphological traits. But when geometric morphometrics are combined with distance-based phylogenetics molar shape divergence appears to record population-level phylogeny, a fact that allows extant and fossil populations to be combined in a single phylogeographic study. The European Sorex araneus complex – a genetically complicated group composed of multiple karyotypic races and species – illustrates the principle. The phylogeographic patterns revealed by molar shape broadly agree with scenarios based on molecular data and circumstantial evidence. Importantly, the inclusion of fossil samples of known age allows minimum divergence times to be inferred. Some races of S. araneus may have diverged more than 120,000 years ago, but others may have diverged less than 14,000. Supporting evidence that molar shape can be used to reconstruct phylogeographic relationships comes from strong correlations between molar shape distances and both phylogenetic divergence time and cytochrome b sequence divergence in datasets where these variables are known independently (fossil carnivorans from a well-constrained stratigraphic setting and shrew species of the genus Sorex, respectively). However, molar shape may have a ‘saturation point’ beyond which it is not applicable.

geometric morphometrics hybrid zones molar shape molecular clocks phylogeography post-glacial recolonization Procrustes distance Sorex Viverravidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avise, J.C., 1994. Molecular Markers, Natural History, and Evolution. Chapman and Hall, New York.Google Scholar
  2. Avise, J.C., 2000. Phylogeography. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  3. Bader, R.S., 1965. Heritability of dental characters in the house mouse. Evolution 19: 378–384.Google Scholar
  4. Bailey R.C. & J. Byrnes, 1990. A new, old method for assessing measurement error in both univariate and multivariate morphometric studies. System. Zool. 39: 124–130.Google Scholar
  5. Balloux, F., H. Brünner, N. Lugon-Moulin, J. Hausser & J. Goudet, 2000. Microsatellites can be misleading: an empirical and simulation study. Evolution 54: 1414–1422.Google Scholar
  6. Barnosky, A.D., 1993. Mosaic evolution at the population level in Microtus pennsylvanicus, pp. 24–59 in Morphological Changes in Quaternary Mammals of North America, edited by R.A. Martin & A.D. Barnosky. Cambridge University Press, Cambridge.Google Scholar
  7. Barton, N.H. & G.M. Hewitt, 1985. Analysis of hybrid zones. Ann. Rev. Ecol. System. 16: 113–148.Google Scholar
  8. Bell, M.A., J.V. Baumgartner & E.C. Olson, 1985. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology 11: 258–271.Google Scholar
  9. Bengtsson, B.O. & I. Frykman, 1990. Karyotype evolution: evidence from the common shrew (Sorex araneus L.). J. Evol. Biol. 3: 85–101.Google Scholar
  10. Berg, H.C., 1993. Random Walks in Biology. Princeton University Press, Princeton, Expanded edn.Google Scholar
  11. Berry, R.J., 1977. Inheritance and Natural History. Collins, London.Google Scholar
  12. Bookstein, F.L., 1992. Morphometric Tools for Landmark Data: Geometry and Biology. Oxford University Press, Oxford.Google Scholar
  13. Churchfield, S.J., 1990. The Natural History of Shrews. Helm, London.Google Scholar
  14. Drummond, A. & A.G. Rodrigo, 2000. Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial sample UPGMA. Mol. Biol. Evol. 17: 1807–1815.Google Scholar
  15. Fedyk, S., 1986. Genetic differentiation of Polish populations of Sorex araneus L. II: possibilities of gene flow between chromosome races. Bull. Polish Acad. Sci. Ser. Biol. 34: 161–172.Google Scholar
  16. Felsenstein, J., 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25: 471–492.Google Scholar
  17. Fitch, W.M. & E. Margoliash, 1967. Construction of phylogenetic trees. Science 155: 279–284.Google Scholar
  18. Ford, C.E., J.L. Hamerton & G.B. Sharman, 1957. Chromosome polymorphism in the common shrew. Nature 180: 392–393.Google Scholar
  19. Ford, C.E. & J.L. Hamerton, 1970. Chromosome polymorphism in the Common Shrew, Sorex araneus. Symp. Zool. Soc. London 26: 223–236.Google Scholar
  20. Fumagalli, L., J. Hausser, P. Taberlet, L. Gielly & D.T. Stewart, 1996. Phylogenetic structures of the Holarctic Sorex araneus group and its relationships with S. samniticus, as inferred from mitochondrial DNA sequences. Hereditas 125: 191–199.Google Scholar
  21. Fumagalli, L., P. Taberlet, D.T. Stewart, L. Gielly, J. Hausser & P. Vogel, 1999. Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 11: 222–235.Google Scholar
  22. Gingerich, P.D., 1974. Size variability of teeth in living mammals and the diagnosis of closely related sympatric fossil species. J. Paleontol. 48: 895–903.Google Scholar
  23. Gingerich, P.D., 1993. Quantification and comparison of evolutionary rates. Am. J. Sci. 293–A: 453–478.Google Scholar
  24. Gingerich, P.D., 2001. Rates of evolution on the time scale of the evolutionary process. Genetica 112-113: 127–144.Google Scholar
  25. Graham, R.W., E.L. Lundelius, M.A. Graham, E.K. Schroeder, R.S. Toomey, E. Anderson, A.D. Barnosky, J.A. Burns, C.S. Churcher, D.K. Grayson, R.D. Guthrie, C.R. Harington, G.T. Jefferson, L.D. Martin, H.G. McDonald, R.E. Morlan, H.A. Semken, S.D. Webb, L. Werdelin, L. & M.C. Wilson, 1996. Spatial response of mammals to late quaternary environmental fluctuations. Science 272: 1601–1606.Google Scholar
  26. Hausser, J., 1994. The Sorex of the araneus-arcticus group (Mammalia: Soricidae): do they actually speciate? Carnegie Museum Natur. Hist. Spl. Publ. 18: 295–306.Google Scholar
  27. Hausser, J., F. Catzeflis, A. Meylan & P. Vogel, 1985. Speciation in the Sorex araneus complex (Mammalia, Insectivora). Acta Zool. Fenn. 170: 125–130.Google Scholar
  28. Hausser, J., L. Fumagalli & P. Taberlet, 1998. Mitochondrial DNA evolution in shrews, pp. 295–308 in Evolution of Shrews, edited by J.M. Wójcik & M. Wolsan. Mammal Research Institute, Polish Academy of Sciences, Bialowieza.Google Scholar
  29. Hausser, J. & D. Jammot, 1974. Etude biométrique des mâchoires chez les Sorex du groupe araneus en Europe continentale (Mammalia, Insectivora). Mammalia 38: 324–343Google Scholar
  30. Hewitt, G.M., 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247–276.Google Scholar
  31. Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68: 87–112.Google Scholar
  32. Jernvall, J., 1995. Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zool. Fenn. 198: 1–61.Google Scholar
  33. Johnson, N.A. & A.H. Porter, 2001. Toward a new synthesis: population genetics and evolutionary developmental biology. Genetica 112-113: 45–58.Google Scholar
  34. Keränen, S.V.E., T. Åberg, P. Kettunen, I. Thesleff, I. & J. Jernvall, 1998. Association of developmental regulatory genes with the development of different molar shapes in two species of rodent. Develop. Genes Evol. 208: 477–486.Google Scholar
  35. Kinnison, M.T. & A.P. Hendry, 2001. The pace of modern life. II: from rates to pattern and process. Genetica 112-113: 145–164.Google Scholar
  36. Lister, A., 1995. Sea-levels and the evolution of island endemics: the dwarf red deer of Jersey. Geol. Soc. Spl. Publ. 96: 151–172.Google Scholar
  37. MacLeod N. & K.D. Rose, 1993. Inferring locomotor behavior in paleogene mammals via eigenshape analysis. Am. J. Sci. 293–A: 300–355.Google Scholar
  38. Manly, B.F.J., 1986. Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res. Populat. Ecol. 28: 201–281.Google Scholar
  39. Martin, R.A., 1993. Patterns of variation and speciation in quaternary rodents, pp. 226–280 in Morphological Change in Quaternary Mammals of North America, edited by R.A. Martin & A.D. Barnosky. Cambridge University Press, Cambridge, England.Google Scholar
  40. Mercer, S.J. & J.B. Searle, 1991. Preliminary analysis of a contact zone between karyotypic races of the common shrew (Sorex araneus) in Scotland. Mémoir. Soc. Vaud. Sci. Naturell. 19: 73–78.Google Scholar
  41. Mercer, S.J., J.B. Searle & B.M.N. Wallace, 1991. Meiotic studies of karyotypically homogenous and heterozygous male common shrews. Mémoir. Soci. Vaud. Sci. Naturell. 19: 33–43.Google Scholar
  42. Mousseau, T.A. & D.A. Roff, 1986. Natural selection and the heritability of fitness components. Heredity 59: 181–197.Google Scholar
  43. Neet C. & J. Hausser, 1989. Chromosomal rearrangements, speciation and reproductive isolation: the example of two karyotypic species of the genus Sorex. J. Evol. Biol. 2: 373–378.Google Scholar
  44. Novacek, M.J., 1992. Mammalian phylogeny: shaking the tree. Nature 356: 121–125.Google Scholar
  45. Ohdachi, S., R. Masuda, H. Abe, J. Adachi, N.E. Dokuchaev, V. Haukisalmi & M.C. Yoshida, 1997. Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences. Zool. Sci. 14: 527–532.Google Scholar
  46. Patton, J.L. & M.F. Smith, 1989. Population structure and the genetic and morphological divergence among pocket gopher species (genus Thomomys), pp. 284–304 in Speciation and its Consequences, edited by D. Otte & J.A. Endler. Sinauer, Sunderland, Massachusetts.Google Scholar
  47. Pergams, O.R.W. & M.V. Ashley, 2001. Microevolution in island rodents. Genetica 112-113: 245–256.Google Scholar
  48. Polly, P.D., 1997. Ancestry and species definition in paleontology: a stratocladistic analysis of Viverravidae (Carnivora, Mammalia) from Wyoming. Contributions from the Museum of Paleontology, University of Michigan 30: 1–53.Google Scholar
  49. Polly, P.D., 1998. Variability, selection, and constraints: development and evolution in viverravid (Carnivora, Mammalia) molar morphology. Paleobiology 24: 409–429.Google Scholar
  50. Polly, P.D., 2001. Phylogenetic Tests for Differences in Shape and the Importance of Divergence Times: Eldredge' Enigma Explored, in Morphology, Shape, and Phylogenetics, edited by N. MacLeod & P. Forey. Taylor and Francis, London.Google Scholar
  51. Prager, E.M. & A.C. Wilson, 1978. Construction of phylogenetic trees for proteins and nucleic acids: empirical evaluation of alternative matrix methods. J. Mol. Evol. 11: 129–142.Google Scholar
  52. Rambaut, A., 2000. Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16: 395–399.Google Scholar
  53. Repenning, C.A., 1967. Subfamilies and genera of the Soricidae. U.S. Geol. Surv. Profess. Paper 565: 1–74.Google Scholar
  54. Rohlf, F.J., 1998. tpsSmall: Is shape variation small? Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York.Google Scholar
  55. Rohlf, F.J., 1999. Shape statistics: Procrustes superimpositions and tangent spaces. J. Classif. 16: 197–223.Google Scholar
  56. Searle, J.B., 1984. Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny. Systemat. Zool. 33: 184–194.Google Scholar
  57. Searle, J.B., 1986. Meiotic studies of Robertsonian heterozygotes from natural populations of the common shrew, Sorex araneus L. Cytogenet. Cell Genet. 41: 154–162.Google Scholar
  58. Searle, J.B. & P.J. Wilkinson, 1987. Karyotypic variation in the common shrew (Sorex araneus) in Britain - a ‘Celtic Fringe’. Heredity 59: 345–351.Google Scholar
  59. Searle, J.B. & J.M. Wójcik, 1998. Chromosomal evolution: the case of Sorex araneus, pp. 217–268 in Evolution of Shrews, edited by J.M. Wójcik & M. Wolsan. Mammal Research Institute, Polish Academy of Sciences, Bialowieza.Google Scholar
  60. Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy. W.H. Freeman and Co., San Francisco.Google Scholar
  61. Thorpe, R.S., 1996. The use of DNA divergence to help determine the correlates of evolution of morphological characters. Evolution 50: 524–531.Google Scholar
  62. Thorpe, R.S., A. Malhotra, H. Black, J.C. Daltry & W. Wüster, 1995. Relating geographic pattern to phylogenetic process. Philos. Transact. Royal Soc. London Ser. B 349: 61–68.Google Scholar
  63. Yalden, D.W., 1982. When did the mammal fauna of the British Isles arrive? Mamm. Rev. 12: 1–57.Google Scholar
  64. Ziegler, R., 1995. Pleistozäne Säugetierfaunen von Genkingen bei Reutlingen (Baden-Württemberg). Stutt. Beit. Naturk. Ser. B, 234: 1–43.Google Scholar
  65. Zima, J., S. Fedyk, K. Fredga, J. Hausser, A. Mishta, J.B. Searle, V.T. Volobouev & J.M. Wójcik, 1996. The list of the chromosome races of the common shrew (Sorex araneus). Hereditas 125: 97–107.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P. David Polly
    • 1
    • 2
  1. 1.2.36 Medical Sciences Building, Queen MaryUniversity of LondonLondonUK
  2. 2.Department of PalaeontologyThe Natural History MuseumUK

Personalised recommendations