Advertisement

Plant Molecular Biology

, Volume 48, Issue 3, pp 203–210 | Cite as

The subcellular localization of an unusual rice calmodulin isoform, OsCaM61, depends on its prenylation status

  • Aiwu Dong
  • Hua Xin
  • Yu Yu
  • Chongrong Sun
  • Kaiming Cao
  • Wen-Hui Shen
Article

Abstract

Calmodulin (CaM) is a small Ca2+-binding protein highly conserved in eukaryotes. We have reported previously a novel rice CaM-like protein (OsCaM61) which contains an N-terminal CaM domain and a C-terminal extension with a potential prenylation site. Here we report in vitro activity assays confirm OsCaM61 as a functional CaM. Using the green fluorescent protein (GFP) as a visual marker, we further studied the subcellular localization of OsCaM61 in stably transformed tobacco cells. The GFP-OsCaM61 fusion protein was membrane-associated whereas OsCaM61-GFP was mainly detected in the nucleoplasm. GFP-OsCaM61 was transported into the nucleoplasm upon a block in isoprenoid biosynthesis by mevinolin treatment of cells. These results indicate that the prenylated OsCaM61 molecules are mainly membrane-associated whereas its unprenylated counterparts are transported into the nucleoplasm. Thus, OsCaM61 may play functions in co-ordinating Ca2+ signaling with isoprenoid metabolism.

calmodulin prenylation membrane nucleus isoprenoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agell, N., Aligue, R., Alemany, V., Castro, A., Jaime, M., Pujol, M.J., Rius, E., Serratosa, J., Taules, M. and Bachs, O. 1998. New nuclear functions for calmodulin. Cell Calcium 23: 115–121.Google Scholar
  2. Anandalakshmi, R., Marathe, R., Ge, X., Herr, J.M.J., Mau, C., Mallory, A., Pruss, G., Bowman, L. and Vance V.B. 2000. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290: 142–144.Google Scholar
  3. Aoyama, T. and Chua, N.-H. 1997. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11: 605–612.Google Scholar
  4. Askerlund, P. 1997 Calmodulin-stimulated Ca2+-ATPases in the vacuolar and plasma membranes in cauliflower. Plant Physiol. 114: 999–1007.Google Scholar
  5. Bach, T.J. 1995. Some new aspects of isoprenoid biosynthesis in plants: a review. Lipids 30: 191–202.Google Scholar
  6. Burgess, W.H., Jemiolo, D.K. and Kretsinger, R.H. 1980. Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim. Biophys. Acta 623: 257–270.Google Scholar
  7. Clarke, M., Bazari, W.L. and Kayman, S.C. 1980. Isolation and properties of calmodulin from Dictyostelium discoideum. J. Bact. 141: 397–400.Google Scholar
  8. Collinge, M. and Trewavas, A.J. 1989. The location of calmodulin in the pea plasma membrane. J. Biol. Chem. 264: 8865–8872.Google Scholar
  9. Criqui, M.C., Parmentier, Y., Derevier, A., Shen, W.-H., Dong, A. and Genschik, P. 2000. Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant J. 24: 763–773.Google Scholar
  10. Fraichard, A., Perotti, E., Gavin, O. and Chanson, A. 1996. Subcellular localization, distribution and expression of calmodulin in Zea mays roots. Plant Sci. 118: 157–165.Google Scholar
  11. Gopalakrishna, R and Anderson, W.B. 1982. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-sepharose affinity chromatography. Biochem. Biophys. Res. Commun. 104: 830–836.Google Scholar
  12. Hemmerlin, A. and Bach, T.J. 1998. Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J. 14: 65–74.Google Scholar
  13. Heo, W.D., Lee, S.H., Kim, M.C., Kim, J.C., Chung, W.S., Chun, H.J., Lee, K.J., Park, C.Y., Park, H.C., Choi, J.Y. and Cho, M.J. 1999. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance response. Proc. Natl. Acad. Sci. USA 96: 766–771.Google Scholar
  14. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.Google Scholar
  15. Lee, S.H., Kim, J.C., Lee, M.S., Heo, W.D., Seo, H.Y., Yoon, H.Y., Hong, J.C., Lee, S.Y., Bahk, J.D., Hwang, I. and Cho, M.J. 1995. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin dependent enzymes. J. Biol. Chem. 270: 21806–21812.Google Scholar
  16. Lee, S.H., Seo, H.Y., Kim, J.C., Heo, W.D., Chung, W.S., Lee, K.J., Kim, M.C., Cheong, Y.H., Choi, J.Y., Lim, C.O. and Cho, M.J. 1997. Differential activation of NAD kinase by plant calmodulin isoforms: the critical role of domain I. J. Biol. Chem. 272: 9252–9259.Google Scholar
  17. Nagata, T., Nemoto, Y. and Hasezawa, S. 1992. Tobacco BY-2 cell line as the 'HeLa' cells in the biology of higher plants. Int. Rev. Cytol. 132: 1–30.Google Scholar
  18. Pandey, S., Tiwari, S.B., Upadhyaya, K.C. and Sopory, S.K. 2000. Calcium signaling: linking environmental signals to cellular functions. Crit. Rev. Plant Sci. 19: 291–318.Google Scholar
  19. Rodríguez-Concepción, M., Yalovsky, S. and Gruissem, W. 1999a. Protein prenylation in plants: old friends and new targets. Plant Mol. Biol. 39: 865–870.Google Scholar
  20. Rodriguez-Concepcion, M, Yalovsky, S, Zik, M, Fromm, H and Gruissem, W. 1999b. The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J. 18: 1996–2007.Google Scholar
  21. Schuurink, R.C., Shartzer, S.F., Fath, A. and Jones, R.L. 1998. Characterization of a calmodulin binding transporter from the plasma membrane of barley aleurone. Proc. Natl. Acad. Sci. USA 95: 1944–1949.Google Scholar
  22. Shen, W.-H., Escudero, J., Schläppi, M., Ramos, C., Hohn, B., and Koukolíková-Nicola Z. 1993. T-DNA transfer to maize cells: histochemical investigation of ?-glucuronidase activity in maize tissues. Proc. Natl. Acad. Sci. USA 90: 1488–1492.Google Scholar
  23. Snedden, W.A. and Fromm, H. 1998. Calmodulin, calmodulinrelated proteins and plant responses to the environment. Trends Plant Sci. 3: 299–304.Google Scholar
  24. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.Google Scholar
  25. van der Luit, A.H., Olivari, C., Haley, A., Knight, M.R. and Trewavas, A.J. 1999. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol. 121: 705–714.Google Scholar
  26. Xiao, C., Xin, H., Dong, A.W., Sun, C.R. and Cao, K.M. 1999. A novel calmodulin-like protein gene in rice which has an unusual prolonged C-terminal sequence carrying a putative prenylation site. DNA Res. 6: 179–181.Google Scholar
  27. Ye, Z.H., Guo, J.F. and Sun, D.Y. 1990. Quantitative assay of plant calmodulin by phosphodiesterase. Plant Physiol. Commun. (Chinese) 1: 54–58.Google Scholar
  28. Zielinski, R.N. 1998. Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 697–725.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Aiwu Dong
    • 1
  • Hua Xin
    • 1
  • Yu Yu
    • 1
  • Chongrong Sun
    • 1
  • Kaiming Cao
    • 1
  • Wen-Hui Shen
    • 2
  1. 1.Department of Biochemistry, School of Life SciencesFudan UniversityChina
  2. 2.Institut de Biologie Moléculaire des Plantes du CNRSStrasbourg CédexFrance

Personalised recommendations