Skip to main content
Log in

A self-contained system for the field production of plant recombinant interleukin-10

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The production of pharmaceutical proteins in plants is creating a broad spectrum of new high-value traits in traditional crop species. As the production of these recombinant proteins moves from bench to field scale, containment and the presence of unwanted secondary metabolites are significant practical issues. We have developed a hybrid male-sterile low-alkaloid tobacco (MSLA) production platform. Recombinant protein is produced in leaves that are harvested prior to flowering. If considered for direct in vivo mammalian use the low-alkaloid background genotype addresses concerns about nicotine, and male sterility further reduces the risk of gene leakage. We have applied this system to the production of human interleukin-10 (phIL-10), a contra-inflammatory cytokine with potential application in the treatment of inflammatory bowel disease and autoimmune diseases. Transgenic low-alkaloid tobacco lines properly assembled a biologically active phIL-10 homodimer. Hybrids made by crossing a single homozygous high-expressing phIL-10 line with a MSLA female were field tested in a high density production system and harvested after 30 days. Recombinant phIL-10 yields were found to be similar in the hybrids and the homozygous control. MSLA tobacco is a practical, self-contained system for the production of plant recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artsaenko O., Kettig B., Fiedler U., Conrad U. and During K. 1998. Potato tubers as a biofactory for recombinant antibodies. Mol. Breed. 4: 313–319.

    Google Scholar 

  • Bai D., Reeleder R. and Brandle J.E. 1996. Production and characterization of tobacco addition lines carrying Nicotiana debneyi chromosomes with a gene for resistance to black root rot. Crop Sci. 36: 852–857.

    Google Scholar 

  • Batteux F., Trebeden H., Charreire J. and Chiocchia G. 1999. Curative treatment of experimental autoimmune thyroiditis by in vivo administration of plasmid DNA coding for interleukin-10. Eur. J. Immunol. 29: 958–963.

    Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Chen C.Y. and Shyu A.B. 1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20: 465–470.

    Google Scholar 

  • Court W.A., Brandle J.E., Pocs R. and Hendel J.G. 1992. The chemical composition of somatic hybrids between Nicotiana tabacum and Nicotiana debneyi. Can. J. Plant Sci. 72: 209–215.

    Google Scholar 

  • Cramer C.L., Boothe J.G. and Oishi K.K. 1999. Transgenic plants for therapeutic proteins: linking upstream and downstream strategies. Curr. Top. Microbiol. Immunol. 240: 95–118.

    Google Scholar 

  • Fiorentino D.F., Zlotnik A., Mosmann T.R., Howard M. and O'Garra A. 1991. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147: 3815–3822.

    Google Scholar 

  • Fischer R., Schumann D., Zimmermann S., Drossard J., Sack M. and Schillberg S. 1999. Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. Eur. J. Biochem. 262: 810–816.

    Google Scholar 

  • Gesser B., Leffers H., Jinquan T., Vestergaard C., Kirstein N., Sindet-Pedersen S. et al. 1997. Identification of functional domains on human interleukin 10. Proc. Natl. Acad. Sci. USA 94: 14620–14625.

    Google Scholar 

  • Hood E.E., Witcher D.R., Maddock S., Meyer T., Baszczynski C., Bailey M. et al. 1997. Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol. Breed. 3: 291–306 (1997).

    Google Scholar 

  • Howard M., Muchamuel T., Andrade S. and Menon S 1993. Interleukin 10 protects mice from lethal endotoxemia. J. Exp. Med. 177: 1205–1208.

    Google Scholar 

  • Kay R., Chan A., Daly M. and McPherson J. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1302.

    Google Scholar 

  • Kramer K.J., Morgan T.D., Throne J.E., Dowell F.E., Bailey M. and Howard J.A. 2000. Transgenic avidin maize is resistant to storage insect pests. Nature Biotechnol. 18: 670–674.

    Google Scholar 

  • Kusnadi A.R., Nikolov Z.L. and Howard J.A. 1997. Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol. Bioeng. 56: 473–484.

    Google Scholar 

  • Leach M.W., Davidson N.J., Fort M.M., Powrie F. and Rennick D.M. 1999. The role of IL-10 in inflammatory bowel disease: ‘Of mice and men’. Toxicol. Path. 27: 123–133.

    Google Scholar 

  • Legg P.D. and Collins G.B. 1971. Inheritance of per cent total alkaloids in Nicotiana tabacum L. II. Genetic effects of two loci in Burley 21 X LA Burley 21 populations. Can. J. Genet. Cytol. 13: 287–291.

    Google Scholar 

  • LewisM.J. and Pelham H.R. 1990. A human homologue of the yeast HDEL receptor. Nature 348: 162–163.

    Google Scholar 

  • Ma J.K., Hiatt A., Hein M., Vine N.D., Wang F., Stabila P. et al. 1995. Generation and assembly of secretory antibodies in plants. Science 268: 716–719.

    Google Scholar 

  • Ma S.W., Zhao D.L., Yin Z.Q., Mukherjee R., Singh B., Qin H.Y. et al. 1997. Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nature Med 3: 793–796.

    Google Scholar 

  • Ma J.K., Hikmat B.Y., Wycoff K., Vine N.D., Chargelegue D., Yu L. et al. 1998. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Med. 4: 601–606.

    Google Scholar 

  • Miele L. 1997. Plants as bioreactors for biopharmaceuticals: regulatory considerations. Trends Biotechnol. 15: 45–50.

    Google Scholar 

  • Miki B., McHugh S.G., Labbe H., Ouellet T., Tolman J.H. and Brandle J.E. 1999. Transgenic tobacco: gene expression and applications. Biotechnol. Agric. For. 45: 336–354.

    Google Scholar 

  • Mire-Sluis A.R. 1999. Cytokines: from technology to therapeutics. Trends Biotechnol 17: 319–325.

    Google Scholar 

  • Moore K.W., O'Garra A., de Waal-Malefyt R., Vieira P. and Mosmann T.R. 1993. Interleukin-10. Annu. Rev. Immunol. 11: 165–190.

    Google Scholar 

  • Napier R.M., Fowke L.C., Hawes C., Lewis M. and Pelham H.R. 1992. Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J. Cell. Sci. 102: 261–271.

    Google Scholar 

  • Ohme-Takagi M., Taylor C.B., Newman T.C. and Green P.J. 1993. The effect of sequences with high AU content on mRNA stability in tobacco. Proc Natl. Acad. Sci. USA 90: 11811–11815.

    Google Scholar 

  • Parmenter D.L., Boothe J.G., van Rooijen G.J., Yeung E.C. and Moloney M.M. 1995. Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol. Biol. 29: 1167–1180.

    Google Scholar 

  • Pauza M.E., Neal H., Hagenbaugh A., Cheroutre H. and Lo D. 1999. T-cell production of an inducible interleukin-10 transgene provides limited protection from autoimmune diabetes. Diabetes 48: 1948–1953.

    Google Scholar 

  • Pretolani M. and Goldman M. 1997. IL-10 a potential therapy for allergic inflammation? Immunol. Today 18: 277–280.

    Google Scholar 

  • Reich K., Bruck M., Grafe A., Vente C., Neumann C. and Garbe C. 1998. Treatment of psoriasis with interleukin-10. J. Invest. Dermatol. 111: 1235–1236.

    Google Scholar 

  • Schouten A., Roosien J., van Engelen F.A., deJong G.A.M., Borst-Vrenssen A.W.M., Zilverentant J.F. et al. 1996. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30: 781–793.

    Google Scholar 

  • Spangenberg G., Perez V.R., Oliveira M.M., Osusky M., Nagel J., Pais M.S. et al. 1992. CMS system in Nicotiana: flower development, patterns of mitochondrial DNA and mitochondrial gene expression. I. Analysis of parental Nicotiana spp. and alloplasmic cms analogs of tobacco. Sex. Plant Reprod. 5: 13–26.

    Google Scholar 

  • Sproule A., Donaldson P., Dijak M, Bevis E., Pandeya R., Keller W.A. et al. 1991. Fertile somatic hybrids between transgenic Nicotiana tabacum and transgenic Nicotiana debneyi selected by dual-antibiotic resistance. Theor. Appl. Genet. 82: 450–456.

    Google Scholar 

  • Thompson-Snipes L., Dhar V., Bond M.W., Mosmann T.R., Moore K.W. and Rennick D.M. 1991. Interleukin-10: a novel stimulatory factor for mast cells and their progenitors. J. Exp. Med. 173: 507–510.

    Google Scholar 

  • van den Elzen P.J.M., Townsend J., Lee K.Y. and Bedbrook J.R. 1985. A chimeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5: 299–302.

    Google Scholar 

  • van Rooijen G.J. and Moloney M.M. 1995. Plant seed oil-bodies as carriers for foreign proteins. Bio/technology 13: 72–77.

    Google Scholar 

  • Vellekamp G., Cannon-Carlson S. and Tang J. 1994. Purification of human interleukin-10 from a cell culture medium. US Patent 5,328,989.

  • Vellekamp G., Cannon-Carlson S. and Tang J. 1998. Purification of bacterially expressed human interleukin-10. US Patent 5,710,251.

  • Vieira P., de Waal-Malefyt R., Dang M.N., Johnson K.E., Kastelein R., Fiorentino D.F. et al. 1991. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc. Natl. Acad. Sci. USA 88: 1172–1176.

    Google Scholar 

  • Wilcox C.P., Weissinger A.K., Long R.C., Fitzmaurice L.C., Mirkov T.E. and Swaisgood H.E. 1997. Production and purification of an active bovine lysozyme in tobacco (Nicotiana tabacum): utilization of value-added crop plants traditionally grown under intensive agriculture. J. Agric. Food Chem. 45: 2793–2797.

    Google Scholar 

  • Windsor W.T., Syto R., Tsarbopoulos A., Zhang R., Durkin J., Baldwin S. et al. 1993. Disulfide bond assignments and secondary structure analysis of human and murine interleukin-10. Biochemistry 32: 8807–8815.

    Google Scholar 

  • Woodlief W.G., Chaplin J.F., Campbell C.R. and DeJong D.W. 1981. Effect of variety and harvest treatments on protein yield of close-grown tobacco. Tobacco Sci. 25: 83–86.

    Google Scholar 

  • Zdanov A., Schalk-Hihi C., Gustchina A., Tsang M., Weatherbee J. and Wlodawer A. 1995. Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure 3: 591–601.

    Google Scholar 

  • Zheng X.X., Steele A.W., Nickerson P.W., Steurer W., Steiger J. and Strom T.B. 1995. Administration of noncytolytic IL-10/Fc in murine models of lipopolysaccharide-induced septic shock and allogeneic islet transplantation. J. Immunol. 154: 5590–5600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menassa, R., Nguyen, V., Jevnikar, A. et al. A self-contained system for the field production of plant recombinant interleukin-10. Molecular Breeding 8, 177–185 (2001). https://doi.org/10.1023/A:1013376407362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013376407362

Navigation