Advertisement

Genetica

, Volume 112, Issue 1, pp 45–58 | Cite as

Toward a new synthesis: population genetics and evolutionary developmental biology

  • Norman A. Johnson
  • Adam H. Porter
Article

Abstract

Despite the recent synthesis of developmental genetics and evolutionary biology, current theories of adaptation are still strictly phenomenological and do not yet consider the implications of how phenotypes are constructed from genotypes. Given the ubiquity of regulatory genetic pathways in developmental processes, we contend that study of the population genetics of these pathways should become a major research program. We discuss the role divergence in regulatory developmental genetic pathways may play in speciation, focusing on our theoretical and computational investigations. We also discuss the population genetics of molecular co-option, arguing that mutations of large effect are not needed for co-option. We offer a prospectus for future research, arguing for a new synthesis of the population genetics of development.

developmental genetics evolution of development G matrices genetic co-option genetic pathways mutation effective size population genetics quantitative genetics speciation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, S.J., 1983. Morphology, performance, and fitness. Am. Zool. 23: 347–361.Google Scholar
  2. Arnold, S.J., M.E. Pfrender & A.G. Jones, 2001. The adaptive landscape as a conceptual bridge between microevolution and macroevolution. Genetica 112-113: 9–32.Google Scholar
  3. Arnold, S.J. & P.C. Phillips, 1999. Hierarchical comparison of genetic variance-covariance matrices. II. Coastal-inland divergence in the garter snake, Thamnophis elegans. Evolution 53: 1516–1527.Google Scholar
  4. Arnone, M.I. & E.H. Davidson, 1997. The hardwiring of development: organization and function of genomic regulatory elements. Development 124: 1851–1864.Google Scholar
  5. Barton, N.H. & M. Turelli, 1989. Evolutionary quantitative genetics: How little do we know? Ann. Rev. Genet. 23: 337–370.Google Scholar
  6. Bender, W., M. Akjam, F. Karch, P.A. Beachy, M. Peifer, P. Spierer, E.B. Lewis & D.S. Hogness, 1983. Molecular genetics of the bithorax complex in D. melanogaster. Science 221: 23–29.Google Scholar
  7. Boguski, M.S., 1999. Biosequence exegesis. Science 286: 453–455.Google Scholar
  8. Bradshaw, H.D., Jr., K.G. Otto, B.E. Frewen, J.K. McKay & D.W. Schemske, 1998. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149: 367–382.Google Scholar
  9. Bryant, E.H., S.A. McCommas & L.M. Coombs, 1986. The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114: 1191–1223.Google Scholar
  10. Charkesworth, B., R. Lande & M. Slatkin, 1982. A neo-Darwinian commentary on macroevolution. Evolution 36: 474–498.Google Scholar
  11. Cohen, F.M., 1984. Genetic divergence under uniform selection. I. Similarity among populations of Drosophila melanogaster in their responses to artificial selection for modifiers of ciD. Evolution 38: 55–71.Google Scholar
  12. Conway Morris, S., 2000. Evolution: bringing molecules into the fold. Cell 100: 1–11.Google Scholar
  13. Coyne, J.A., 1992. Genetics and speciation. Nature 355: 511–515.Google Scholar
  14. Coyne, J.A., 1995. Speciation in monkeyflowers. Nature 376: 726–727.Google Scholar
  15. Darwin, C., 1859. On the Origin of Species. John Murray, London.Google Scholar
  16. Davidson, E.H., 1986. Gene Activity in Early Development. Academic Press, San Diego, 3rd edn.Google Scholar
  17. Dobzhansky, Th., 1937. Genetics and the Origin of Species. Columbia University Press, New York.Google Scholar
  18. Ephrussi, B., 1958. The Cytoplasm and Somatic Cell Variation. J. Cell. Compar. Physiol. 52 (suppl.): 35–54.Google Scholar
  19. Falconer, D.S. & T.F.C MacKay, 1996. Introduction to Quantitative Genetics. Longman, Harlow, U. K., 4th edn.Google Scholar
  20. Feder, J.L., 1998. The Apple Maggot fly, Rhagoletis pomonella: flies in the face of conventional wisdom about speciation?, pp. 130–144 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, New York.Google Scholar
  21. Feder, M.E. & W.B. Watt, 1992. Functional biology of adaptation, pp. 365–392 in Genes in Ecology, edited by R. J. Berry, T. J. Crawford & G.M. Hewitt. Blackwell Scientific Publications, Oxford.Google Scholar
  22. Felsenstein, J., 1985. Phylogenies and the comparative method. Amer. Natur. 125: 1–15.Google Scholar
  23. Fields, S., 2001. Proteomics - proteomics in genomeland. Science 291: 1221.Google Scholar
  24. Fisher, R.A., 1930. The Geneticial Theory of Natural Selection. Dover Press, New York.Google Scholar
  25. Frank, S.A., 1999. Population and quantitative genetics of regulatory networks. J. Theor. Biol. 197: 281–294.Google Scholar
  26. Futuyma, D. J., 1998. Evolutionary Biology. Sinauer Associates, Sunderland, M.A., 3rd edn.Google Scholar
  27. Garstang, W., 1922. The theory of recapitulation: a critical restatement of the biogenetic law. J. Linn. Soc. Zool. 35: 81–101.Google Scholar
  28. Gavrilets, S., 1997. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12: 307–312.Google Scholar
  29. Gavrilets, S., 1999. A dynamical theory of speciation on holey adaptive landscapes. Amer. Natur. 154: 1–22.Google Scholar
  30. Gavrilets, S., H. Li & M.D. Vose, 2000. Patterns of parapatric speciation. Evolution 54: 1126–1134.Google Scholar
  31. Gerhart, J. & M. Kirschner, 1997. Cells, Embryos, and Evolution. Blackwell Science.Google Scholar
  32. Gibson, G., 1996. Epistasis and pleiotropy as natural properties of transcriptional regulation.Theor. Pop. Biol. 49: 58–89.Google Scholar
  33. Gilbert, S.F., 1988. pp. 311–346. in The American Development of Biology, edited by R. Rainger, K.R. Benson & J. Maienschein. University of Pennsylvania Press, Philadelphia, P.A.Google Scholar
  34. Gilbert, S.F., 1997. Developmental Biology. Sinauer Press, Sunderland, M.A., 5th edn.Google Scholar
  35. Gilbert, S.F., 2000. Genes classical and genes developmental: the different uses of the gene in evolutionary syntheses, pp. 178–192 in The Concept of the Gene in Development and Evolution, edited by P. Buerton, R. Falk & H.-J. Rheinberger. Cambridge University Press, Cambridge, U.K.Google Scholar
  36. Gilbert, S.F., J.M. Opitz & R.A. Raff, 1996. Resynthesizing evolutionary and developmental biology. Devel. Biol. 173: 357–372.Google Scholar
  37. Goldschmidt, R., 1940. The Material Basis of Evolution. Yale University Press, New Haven, C.T.Google Scholar
  38. Goodnight, C.J., 1987. On the effect of founder events on epistatic genetic variance. Evolution 41: 80–91.Google Scholar
  39. Gromko, M.H., 1995. Unpredictability of correlated response to selection - pleiotropy and sampling interact. Evolution 49: 685–693.Google Scholar
  40. Halder, G., P. Callaerts & W.J. Gehring, 1995. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267: 1788–1792.Google Scholar
  41. Hansen, T.F. & G.P. Wagner, 2001. Modeling genetic architecture: a multilinear theory of gene interaction. Theor. Pop. Bio. 59: 61–86.Google Scholar
  42. Hendry, A., J.K. Wenburg, P. Bentzen, E.C. Volk & T.P. Quinn, 2000. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290: 516–518.Google Scholar
  43. Hey, J. & R.M. Kliman, 1993. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol. Biol. Evol. 10: 804–822.Google Scholar
  44. Hillis, D.M., C. Moritz & B. Mable, 1996. Molecular Systematics. Sinauer Associates, Sunderland, M.A., 2nd edn.Google Scholar
  45. Johnson, N.A., 1998. Postzygotic reproductive isolation: epigenetics for an epiphenomenon? J. Evol. Biol. 11: 207–212.Google Scholar
  46. Johnson, N.A., 2000a. Gene interaction and the origin of species, pp. 197–212 in Epistasis and the Evolutionary Process, edited by J.B. Wolf, E.D. Brodie III & M.J. Wade. Oxford University Press, New York.Google Scholar
  47. Johnson, N.A., 2000b. Speciation: Dobzhansky-Muller incompatibilities, dominance, and gene interaction. Trends Ecol. Evol. 15: 480–482.Google Scholar
  48. Johnson, N.A. & A.H. Porter, 2000. Rapid speciation via parallel, directional selection on regulatory genetic pathways. J. Theor. Biol. 205: 527–542.Google Scholar
  49. Johnson, N.A. & M.J. Wade, 1996. Genetic covariances within and between species: indirect selection for hybrid inviability. J. Evol. Biol. 9: 205–214.Google Scholar
  50. Jones, S., 1999. Darwin' Ghost: ‘The Origin of Species’ Updated. Ballantine, New York.Google Scholar
  51. Kauffman, S., 1993. The Origins of Order: Self-Organization and selection in Evolution. Oxford University Press, New York.Google Scholar
  52. Kliman, R.M., P. Andolfatto, J.A. Coyne, F. Depaulis, M. Kreitman, A.J. Berry, J. McCarter, J. Wakeley & J. Hey, 2000. The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156: 1913–1931.Google Scholar
  53. Kohler, R.E., 1994. Lords of the Fly: Drosophila Genetics and Experimental Life. University of Chicago Press, Chicago.Google Scholar
  54. Lascoux, M., 1997. Unpredictability of correlated response to selection: linkage and initial frequency also matter. Evolution 51: 1394–1400.Google Scholar
  55. Lewin, B., 1997. Genes VI. Oxford University Press, Oxford.Google Scholar
  56. Lewis, E.B., 1978. A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.Google Scholar
  57. Lewontin, R.C., 1974. The Genetic Basis of Evolutionary Change. Harvard University Press.Google Scholar
  58. Losos, J.B., T.R. Jackman, A. Larson, K. de Queiroz & L. Rodriguez-Schettino, 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279: 2115–2118.Google Scholar
  59. Ludwig, M.Z., C. Bergman, N.H. Patel & M. Kreitman, 2000. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403: 564–567.Google Scholar
  60. Lyman, R.F. & T.F.C. MacKay, 1998. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: the Delta-Hairless gene region.Google Scholar
  61. Lynch, M. & A.G. Force, 2000. The origin of interspecific genomic incompatibility via gene duplication. Amer. Natur. 156: 590–605.Google Scholar
  62. Lynch, M. & J.B. Walsh, 1998. Fundamentals of Quantitative Genetics. Sinauer Associates, Sunderland, M.A.Google Scholar
  63. Mackay, T.F.C., 1995. The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system. Trends Genet. 11: 464–470.Google Scholar
  64. Mackay, T.F.C., 1996. The nature of quantitative genetic variation revisited: lessons from Drosophila bristles. BioEssays 18: 113–121.Google Scholar
  65. MacKay, T.F.C. & C.H. Langley, 1990. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature 348: 64–66.Google Scholar
  66. Martins, E.P. (ed.), 1996. Phylogenies and the Comparative Method in Animal Behavior. Oxford University Press, New York.Google Scholar
  67. Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge, M.A.Google Scholar
  68. Mayr, E., 1982. The Growth of Biological Thought. Harvard University Press, Cambridge, M.A.Google Scholar
  69. McGinnis, W.C., R.L. Garber, J. Wirz, A. Kurioiwa & W.J. Gehring, 1984a. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37: 403–408.Google Scholar
  70. McGinnis, W., M.S. Levine, E. Hafen, A. Kuroiwa & W. Gehring, 1984b. A conserved DNA sequence in homeotic genes of the Drosophila antennapedia and Bithorax complexes. Nature 308: 428–433.Google Scholar
  71. McPeek, M., 1995. Testing hypotheses about evolutionary change on single branches of a phylogeny using evolutionary contrasts. Am. Nat. 145: 686–703.Google Scholar
  72. Muller, H.J., 1942. Isolating mechanisms, speciation, and temperature. Biol. Symp. 6: 71–125.Google Scholar
  73. Munn, J.S. & R. Kopan, 2000. Notch signaling: from the outside in. Devel. Biol. 228: 151–165.Google Scholar
  74. Nagy, L., 1998. Changing patterns of gene regulation in the evolution of arthropod morphology. Amer. Zool. 38: 818–828.Google Scholar
  75. Nanney, D.L., 1982. Genes and phenes in Tetrahymena. Bioscience 783–788.Google Scholar
  76. Nusselin-Volhard, C. & E. Wieschaus, 1980. Mutations affecting segmentation number and polarity in Drosophila. Nature 287: 795–801.Google Scholar
  77. Orr, H.A., 1995. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139: 1805–1813.Google Scholar
  78. Orr, H.A., 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.Google Scholar
  79. Orr, H.A., L.D. Madden, J.A. Coyne, R. Goodwin & R.S. Hawley, 1997. The developmental basis of hybrid inviability: a mitotic defect in Drosophila hybrids. Genetics 145: 1031–1040.Google Scholar
  80. Orr, H.A. & J.A. Coyne, 1992. The genetics of adaptation: a reassessment. Amer. Natur. 140: 725–742.Google Scholar
  81. Palopoli, M.F. & N.H. Patel, 1996. Neo-Darwinian developmental evolution: can we bride the gap between pattern and process? Curr. Opin. Genet. Devel. 6: 502–508.Google Scholar
  82. Pederson, J.A., J.W. La Follette, C. Gross, A. Veraksa, W. McGinnis & J.W. Mahaffey, 2000. Regulation by homeoproteins: a comparsion of deformed-responsive elements. Genetics 156: 677–686.Google Scholar
  83. Perez, D.E., 1994. Genetics of postmating reproductive isolation in Drosophila: investigation of an X-linked hybrid sterility region. PhD Dissertation, University of Chicago, Chicago, I.L.Google Scholar
  84. Perez, D.E. & C.-I. Wu, 1995. Further characterization of the Odysseus locus of hybrid sterility in Drosophila: one gene is not enough. Genetics 140: 201–206.Google Scholar
  85. Perez, D.E., C.-I. Wu, N.A. Johnson & M.-L. Wu, 1993. Genetics of reproductive isolation in the Drosophila simulans clade: DNA marker-assisted mapping of a hybrid-male sterility gene, Odysseus (Ods). Genetics 134: 261–275.Google Scholar
  86. Phillips, P.C., 1999. From complex traits to complex alleles. Trends Genet. 15: 6–8.Google Scholar
  87. Phillips, P.C. & S.J. Arnold, 1999. Hierarchical comparison of genetic variance-covariance matrices. I. Using the Flury hierarchy. Evolution 53: 1506–1515.Google Scholar
  88. Phillips, P.C., M.C. Whitlock & K. Fowler, 2001. Inbreeding changes the shape of the genetic covariance matrix in Drosophila melanogaster. Genetics (in review).Google Scholar
  89. Pigliucci, M. & C.D. Schlichting, 1997. On the limits of quantitative genetics for the study of phenotypic evolution. Acta Biotheor. 45: 143–160.Google Scholar
  90. Pray, L.A. & C.J. Goodnight, 1995. Genetic variability in inbreeding depression in the flour beetle, T. castaneum. Evolution 49: 176–188.Google Scholar
  91. Quiring, R., U. Walldorf, U. Kloter & W.J. Gehring, 1994. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Anirida in humans. Science 265: 785–789.Google Scholar
  92. Raff, R.C., 1996. The Shape of Life. University of Chicago Press, Chicago.Google Scholar
  93. Rice, S.H., 1998. The evolution of canalization and the breaking of von Baer' laws: modeling the evolution of development with epistasis. Evolution 52: 647–656.Google Scholar
  94. Rice, S.H., 2000. The evloution of developmental interactions, pp. 82–98 in Epistasis and the Evolutionary Process, edited by J.B. Wolf, E.D. Brodie III & M.J. Wade. Oxford University Press, New York.Google Scholar
  95. Roff, D.A., 2000. The evolution of the G matrix: selection or drift? Heredity 84: 135–142.Google Scholar
  96. Roff, D.A. & T.A. Mousseau, 1999. Does natural selection alter genetic architecture? An evaluation of quantitative genetic variation among populations of Allonemobius socius and A. fasciatus. J. Evol. Biol. 12: 361–369.Google Scholar
  97. Rundle, H.D. & M.C. Whitlock, 2001. A genetic interpretation of ecologically dependent isolation. Evolution 55: 198–201.Google Scholar
  98. Sawamura, K., A.W. Davis & C.-I. Wu, 2000. Genetic analysis of speciation by means of introgression into Drosophila melanogaster. Proc. Nat. Acad. Sci. U.S.A. 97: 2652–2655.Google Scholar
  99. Schemske, D.W. & H.D. Bradshaw, Jr., 1999. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl. Acad. Sci. U.S.A. 96: 11910–11915.Google Scholar
  100. Schulter, D., 1998. Ecological causes of speciation, pp. 114–129 in Endless Forms: Species and Speciation, edited by D.J. Howard and S.H. Berlocher. Oxford University Press, New York.Google Scholar
  101. Schulter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, New York.Google Scholar
  102. Schutt, C. & R. Nothiger, 2000. Structure, function, and evolution of sex-determining systems in Dipeteran insects. Development 127: 667–677.Google Scholar
  103. Scott, M.P. & A.J. Weiner, 1984. Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithroax, and fushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 81: 4115–4119.Google Scholar
  104. Skaer, N. & P. Simpson, 2000. Genetic analysis of bristle loss in hybrids between Drosophila melanogaster and D. simulans provides evidence for divergence of cis-regulatory sequences in the achaete-scute gene complex. Devel. Biol. 221: 148–167.Google Scholar
  105. Stern, D., 2000. Perspective: evolutionary developmental biology and the problem of variation. Evolution 54: 1079–1091.Google Scholar
  106. Sucena, E. & D.L. Stern, 2000. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby. Proc. Natl. Acad. Sci. U.S.A. 97: 4530–4534.Google Scholar
  107. Templeton, A.R., 1981. Mechanisms of speciation - a population genetic approach. Ann. Rev. Ecol. Syst. 12: 23–48.Google Scholar
  108. Thompson, D.W., 1942. On Growth and Form. Cambridge University Press, Cambridge, U.K.Google Scholar
  109. Ting, C.-T., S.-C. Tsaur, M.-L. Wu & C.-I. Wu, 1998. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282: 1501–1504.Google Scholar
  110. Ting, C.T., S.C. Tsaur & C.-I. Wu, 2000. The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. Proc. Natl. Acad. Sci. U.S.A. 97: 5313–5316.Google Scholar
  111. Turelli, M. & H.A. Orr, 2000. Dominance, epistasis, and the genetics of postzygotic isolation. Genetics 154, 1663–1679.Google Scholar
  112. Wade, M.J., 2000. pp. 213–231 in Epistasis and the Evolutionary Process, edited by J.B. Wolf, E.D. Brodie III & M.J. Wade. Oxford University Press, New York.Google Scholar
  113. Wagner, G.P., 1996. Does evolutionary plasticity evolve? Evolution 50: 1008–1023.Google Scholar
  114. Wake, D.B., G. Roth & M. Wake, 1983. On the problem of stasis in organismal evolution. J. Theor. Biol. 101: 211–224.Google Scholar
  115. Wolf, J.B., W.A. Frankino, A.F. Agrawal, E.D. Brodie III & A.J. Moore, 2001. Developmental interactions and the constituents of quantitative variation. Evolution 55: 232–245.Google Scholar
  116. Wright, S., 1968. Evolution and the Genetics of Populations. Vol. I., Genetic and Biometric Foundations. University of Chicago Press, Chicago.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Norman A. Johnson
    • 1
  • Adam H. Porter
    • 1
  1. 1.Department of Entomology and Program in Organismic and Evolutionary BiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations