Genetica

, Volume 112, Issue 1, pp 33–43 | Cite as

Possible consequences of genes of major effect: transient changes in the G-matrix

  • Aneil F. Agrawal
  • Edmund D. BrodieIII
  • Loren H. Rieseberg
Article

Abstract

Understanding the process of evolutionary divergence requires knowledge of the strength, form, and targets of selection, as well as the genetic architecture of the divergent traits. Quantitative genetic approaches to understanding multivariate selection and genetic response to selection have proven to be powerful tools in this endeavor, particularly with respect to short-term evolution. However, the application of quantitative genetic theory over periods of substantial phenotypic change is controversial because it requires that the requisite genetic parameters remain constant over the period of time in question. We show herein how attempts to determine the stability of key genetic parameters may be misled by the ‘many genes of small effect’ type of genetic architecture generally assumed in quantitative genetics. The presence of genes of major effect (GOMEs) can alter the genetic variance-covariance matrix dramatically for brief periods of time, significantly alter the rate and trajectory of multivariate evolution, and thereby mislead attempts to reconstruct or predict long term evolution.

genes of major effect G-matrix constancy QTL analysis quantitative genetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, S.J., 1994. Multivariate inheritance and evolution: a review of concepts, pp. 17–48 in Quantitative Genetic Studies of Behavioral Evolution, edited by C.R.B. Boake. Chicago Press, Chicago.Google Scholar
  2. Barton, N.H. & M. Turelli, 1987. Adaptive landscapes, genetic distance and the evolution of quantitative characters. Gen. Res. Camb. 49: 157–173.Google Scholar
  3. Barton, N.H. & M. Turelli, 1989. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet. 23: 337–370.Google Scholar
  4. Barton, N.H. & M. Turelli, 1991. Natural and sexual selection on many loci. Genetics 127: 229–255.Google Scholar
  5. Bradshaw, H.D., K.G. Otto, B.E. Frewen, J.K. McKay & D.W. Schemske, 1998. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 367–382.Google Scholar
  6. Carriére, Y. & D.A. Roff, 1995. Change in genetic architecture resulting from the evolution of insecticide resistance: a theoretical and empirical analysis. Heredity 75: 618–629.Google Scholar
  7. Carriére, Y., J.P. Deland, D.A. Roff & C. Vincent, 1994. Life history costs associated with the evolution of insecticide resistance. Proc. R. Soc. Lond. B 258: 35–40.Google Scholar
  8. Cheverud, J.M., 1988. A comparison of genetic and phenotypic correlations. Evolution 42: 958–968.Google Scholar
  9. de Vicente, M.C. & S.D. Tanksley, 1993. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134: 585–596.Google Scholar
  10. Doebley, J., A. Stec & C. Gustus, 1995. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141: 333–346.Google Scholar
  11. Endler, J.A., 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.Google Scholar
  12. Falconer, D.S. & T. Mackay, 1996. Introduction to Quantitative Genetics. Longman, New York.Google Scholar
  13. Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.Google Scholar
  14. Grant, P.R. & B.R. Grant, 1995. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49: 241–251.Google Scholar
  15. Kingsolver, J.G., H.E. Hoekstra, J.M. Hoekstra, D. Berrigan, S.N. Vignieri, C.E. Hill, A. Hoang, P. Gibert & P. Beerli, 2001. The strength of phenotypic selection in natural populations. Am. Nat.Google Scholar
  16. Lai, C., R.F. Lyman, A.D. Long, C.H. Langley & T.F.C. Mackay, 1994. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science 266: 1697–1702.Google Scholar
  17. Lande, R., 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314–334.Google Scholar
  18. Lande, R., 1979. Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33: 402–416.Google Scholar
  19. Lande, R., 1980. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94: 203–215.Google Scholar
  20. Lande, R., 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity 50: 47–65.Google Scholar
  21. Lande, R. & S.J. Arnold, 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.Google Scholar
  22. Lofsvold, D., 1988. Quantitative genetics of morphological differentiation in Peromyscus. II. Analysis of selection and drift. Evolution 42: 54–67.Google Scholar
  23. Lynch, M. & B. Walsh, 1998. Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland, MA.Google Scholar
  24. Mackay, T.F.C., 1995. The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system. Trends Genet. 11: 464–470.Google Scholar
  25. Mackay, T.F.C., 1996. The nature of quantitative genetic variation revisited: lessons from Drosophila bristles. BioEssays 18: 113–121.Google Scholar
  26. Orr, H.A., 1998. The population genetic of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.Google Scholar
  27. Orr, H.A. & J.A. Coyne, 1992. The genetics of adaptation revisited. Am. Nat. 140: 725–742.Google Scholar
  28. Phillips, P.C. & S.J. Arnold, 1989. Visualizing multivariate selection. Evolution 43: 1209–1222.Google Scholar
  29. Phillips, P.C. & S.J. Arnold, 1999. Hierarchical comparison of genetic variance-covariance matrices. I. Using the Flury hierarchy. Evolution 53: 1506–1515.Google Scholar
  30. Price, T., M. Turelli & M. Slatkin, 1993. Peak shifts produced by correlated response to selection. Evolution 47: 280–290.Google Scholar
  31. Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.Google Scholar
  32. Roff, D.A., 2000. The evolution of the G-matrix: selection or drift. Heredity 84: 135–142.Google Scholar
  33. Schluter, D., 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50: 1766–1774.Google Scholar
  34. Tanksley, S.D., 1993. Mapping polygenes. Annu. Rev. Genet. 27: 205–233.Google Scholar
  35. True, J.R., J. Liu, L.F. Stam, Z.-B. Zeng & C.C. Laurie, 1997. Quantitative genetic analysis of divergence in male secondary sexual traits between Drosophila simulans and Drosophila mauritiana. Evolution 51: 816–832.Google Scholar
  36. Turelli, M., 1988. Phenotypic evolution, constant covariances, and the maintanence of additive variance. Evolution 42: 1342–1347.Google Scholar
  37. Turelli, M., 1990. Dynamics of polygenic characters under selection. Theor. Pop. Biol. 38: 1–57.Google Scholar
  38. Turelli, M. & N.H. Barton, 1994. Genetic and statistical analyses of strong selection on polygenic traits: what, me normal? Genetics 138: 913–941.Google Scholar
  39. Whitlock, M.C., P.C. Phillips, F.B.-G. Moore & S.J. Tonsor, 1995. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26: 601–629.Google Scholar
  40. Willis, J.H., J.A. Coyne & M. Kirkpatrick, 1991. Can one predict the evolution of quantitative characters without genetics? Evolution 45: 441–444.Google Scholar
  41. Zeng, Z.-B., 1988. Long-term correlated response, interpopulation covariation, and interspecific allometry. Evolution 42: 363–374.Google Scholar
  42. Zeng, Z.-B., J. Liu, L.F. Stam, C.-H. Kao, J.M. Mercer & C.C. Laurie, 2000. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154: 299–310.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Aneil F. Agrawal
    • 1
    • 2
  • Edmund D. BrodieIII
    • 1
    • 2
  • Loren H. Rieseberg
    • 1
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA
  2. 2.Center for the Integrative Study of Animal BehaviorIndiana UniversityBloomingtonUSA

Personalised recommendations