Advertisement

Nutrient Cycling in Agroecosystems

, Volume 61, Issue 1–2, pp 53–61 | Cite as

SOM management in the tropics: Why feeding the soil macrofauna?

  • Patrick LavelleEmail author
  • Eleusa Barros
  • Eric Blanchart
  • George Brown
  • Thierry Desjardins
  • Lucero Mariani
  • Jean-Pierre Rossi
Article

Abstract

This paper synthesises information on the food requirements of soil macroinvertebrates and some of their effects on soil organic matter dynamics. Some clues to techniques that would optimise their activities through organic matter management are suggested. Soil macroinvertebrates can consume almost any kind of organic residues in mutualistic association with soil microflora. Significant amounts estimated at several T per ha of predominantly easily assimilable C are used yearly in natural ecosystems as energy to sustain these activities. Sources of C used are highly variable depending on the feeding regime. The largest part of the energy assimilated (e.g., 50% by the tropical earthworm Millsonia anomala) is actually spent in burrowing and soil transport and mixing. Bioturbation often affects several thousand tons of soil per hectare per year and several tenth of m3 of voids are created in soil. A great diversity of biogenic structures accumulate and their nature and persistance over time largely controls hydraulic soil properties. The OM integrated into the compact biogenic structures (termite mounds, earthworm globular casts) is often protected from further decomposition. Most management practices have negative effects on the diversity and abundance of macroinvertebrate communities. Structures inherited from faunal activities may persist for some weeks to years and the relationship between their disappearance and soil degradation is rarely acknowledged. When SOM supply is maintained but diversity is not, the accumulation in excess of structures of one single category may have destructive effects on soil. It is therefore essential to design practices that provide the adequate organic sources to sustain the activity and diversity of invertebrates. Special attention should also be paid to the spatial array of plots and rotations in time.

earthworms macrofauna organic matter management soil structure tropical soils 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alegre JC, Pashanasi B & Lavelle P (1996) Dynamics of soil physical properties in a low input agricultural system inoculated with the earthworm Pontoscolex corethrurus in the amazon region of Peru. SSSA Journal 60: 1522–1529Google Scholar
  2. Andrén O, Brussaard L & Clarholm M (1999) Soil organism influence on ecosystem-level processes - by passing the ecological hierarchy? Appl Soil Ecol 11(2-3): 177–188CrossRefGoogle Scholar
  3. Barois I., Lavelle P, Brossard M, Tondoh J, Martinez M, Rossi JP, Senapati BK, Angeles A, Fragoso C, Jimenez JJ, Decaëns T, Lattaud C, Kanyonyo J, Blanchart E, Chapuis L, Brown GG & Moreno A. (1999) Ecology of earthworm species with large environmental tolerance and/or extended distribution. In: Lavelle P, Brussaard L & Hendrix P (eds) Earthworm Management in Tropical Agroecosystems, pp 57–86. Wallingford, UK: CAB International PressGoogle Scholar
  4. Barois I & Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidæ, Oligochæta). Soil Biol Biochem 18(5): 539–541CrossRefGoogle Scholar
  5. Barois I, Villemin G, Lavelle P & Toutain F (1993) Transformation of the soil structure through Pontoscolex corethrurus (Oligochaeta) intestinal tract. Geoderma 56: 57–66CrossRefGoogle Scholar
  6. Barros ME (1999) Effet de la macrofaune sur la structure et les processus physiques du sol de paturages dégradés d'Amazonie, Doctorate thesis, University Paris VIGoogle Scholar
  7. Beare M & Lavelle P. 1998 Regulation of Microbial Activity and Organic Matter Dynamics by Macroorganisms: Integrating Biological Function in Soil. ISSS Congress, Symposium N° 9 (CD-Rom), Montpellier, FranceGoogle Scholar
  8. Bernier N (1998) Earthworm feeding activity and development of the humus profile. Biol Fertil Soil 26: 215–223CrossRefGoogle Scholar
  9. Bignell, DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH & Nalepa CA (eds) Nourishment and Evolution in Insect Societies, pp 131–158 Boulder, Colorado: Westview PointGoogle Scholar
  10. Blanchart E, Albrecht A, Alegre J, Duboisset A, Villenave C, Pashanasi B, Lavelle P & Brussaard L (1999) Effects of earthworms on soil structure and physical properties. In: Earthworm Management in Tropical Agroecosystems, pp 149–172. Lavelle P, Brussaard L & Hendrix P (eds). Wallingford, UK: CAB International PressGoogle Scholar
  11. Blanchart E, Lavelle P, Braudeau E, Le Bissonais Y & Valentin C (1997) Regulation of soil structure by geophagous earthworm activities in humid savannas of Cote d'Ivoire. Soil Biol Biochem 29(3/4): 431–439CrossRefGoogle Scholar
  12. Brown GG, Pashanasi B, Villenave C, Patron JC, Senapati BK, Giri S, Barois I, Lavelle P, Blanchart E, Blakemore RJ, Spain AV & Boyer J (1999) Effects of earthworms on plant production in the tropics In: Lavelle P, Brussaard L & Hendrix P (eds). Earthworm Management in Tropical Agroecosystems, pp 87–148 Wallingford, UK: CAB International PressGoogle Scholar
  13. Brown GG (2000) Comment les vers de terre influencent la croissance des plantes: études en serre sur les interactions avec le systèmes racinaire. Doctorate thesis, University Paris VI.Google Scholar
  14. Brussaard L (1998) Soil fauna, guilds, functional groups and ecosystem processes. Appl Soil Ecol 9: 123–135CrossRefGoogle Scholar
  15. Butler JHA & Buckerfield JC (1979) Digestion of lignin by termites. Soil Biol Biochem 11: 507–513CrossRefGoogle Scholar
  16. Charpentier F (1996) Effets de l'inoculation d'un ver de terre endogé sur la dynamique de la matière organique d'un sol ferrallitique cultivé de l'Amazonie Péruvienne. Doctorate thesis, University Paris VIGoogle Scholar
  17. Chauvel A, Grimaldi M, Barros E, Blanchart E, Desjardins Th, Sarrazin M & Lavelle P (1999) Pasture degradation by an Amazonian earthworm. Nature 389: 32–33CrossRefGoogle Scholar
  18. Cockson LJ (1987) 14C-lignin degradation by three Australian termites. World Sci Technol 21: 11–25Google Scholar
  19. Collins NM (1980) The distribution of soil macrofauna on the west ridge of Gunung (Mount) Mulu, Sarawak. Oecologia 44: 263–275CrossRefGoogle Scholar
  20. Curry JP (1987) The invertebrate fauna of grassland and its influence on productivity. 1. The composition of the fauna. Grass For Sci 42: 103–120CrossRefGoogle Scholar
  21. Decaëns T (1999). Rôle fonctionnel et réponses aux pratiques agricoles des vers de terre et autres ingénieurs écologiques dans les savanes Colombiennes. Doctorate thesis, University Paris VIGoogle Scholar
  22. Decaëns T, Lavelle P, Jimenez Jaen JJ, Escobar G & Ripstein G (1994) Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. Eur J Soil Biol 30(4): 157–168Google Scholar
  23. De Souza OFF & Brown VK (1994) Effects of habitat fragmentation on Amazonia termite communities. J Trop Ecol 10: 197–206CrossRefGoogle Scholar
  24. Eggleton P, Bignell DE, Wood TG, Sands WA, Mawdsley N, Lawton JH & Bignell NC (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, Southern Cameroon. Phil Trans Roy Soc London B 351: 51–68Google Scholar
  25. Eggleton P, Homathevi R, Jeeva D, Jones D, Davis RG & Maryati M (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, East Malaysia. Ecotropica 3: 119–128Google Scholar
  26. Elkins NZ, Sabol GZ, Ward TJ & GW Whitford (1986) The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia 68: 521–528CrossRefGoogle Scholar
  27. Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation 7: 1221–1244CrossRefGoogle Scholar
  28. Garnier-Sillam E, Toutain F. & Renoux J. (1988) Comparaison de l'influence de deux termitières (Humivore et champignoniste) sur la stabilité structurale de sols forestiers tropicaux. Pedobiologia 32: 89–97Google Scholar
  29. Gilot C, Lavelle P, Blanchart E, Keli J, Kouassi P & Guillaume G (1995) Biological activity of soils in Hevea stands of different ages in Côte d'Ivoire. Act Zool Fennic 196: 186–190Google Scholar
  30. Hallaire V, Curmi P, Duboisset A, Lavelle P & Pashanasi B (2000) Soil structure changes induced by the tropical earthworm Pontoscolex corethrurus and organic inputs in a Peruvian ultisol. Eur J Soil Biol 36: 35–44CrossRefGoogle Scholar
  31. Higashi M, Abe T & Burns TP (1992) Carbon-nitrogen balance and termite Ecology. Proc Roy Soc London B 249: 303–308Google Scholar
  32. Lapied E & Rossi JP (2000) relating internal morphology of three tropical earthworms to their effects on soil aggregation. XII International Colloquium of Soil Zoology. Abstracts, p 43Google Scholar
  33. Lattaud C, Locati S, Mora P, Rouland C & Lavelle P (1998) The diversity of digestive systems in the tropical geophagous earthworms. Appl Soil Ecol 9: 189–195CrossRefGoogle Scholar
  34. Lavelle P (1978) Les Vers de Terre de la savane de Lamto (Côte d'Ivoire): peuplements, populations et fonctions dans l'écosystème, Doctorate thesis, University Paris VIGoogle Scholar
  35. Lavelle P, Blanchart E, Martin A, Martin S, spain A, Toutain F, Barois I & Schaefer R (1993) A hierarchical model for decomposition in terrestrial ecosystems. Application to soils in the humid tropics. Biotropica 25(2): 130–150CrossRefGoogle Scholar
  36. Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27: 93–132CrossRefGoogle Scholar
  37. Lavelle P, Bignell D, Lepage M et al. (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33(4): 159–193Google Scholar
  38. Lavelle P, Pashanasi B, Charpentier FR, Gilot C, Rossi P, Derouard L, André J, Ponge JF & Bernier N (1998) Large-scale effects of earthworms on soil organic matter and nutrient dynamics. In: Edwards CA (ed) Earthworm Ecology, pp 103–122. Columbus, Ohio: St. Lucie Press.Google Scholar
  39. Lavelle P, Brussaard L & Hendrix P (eds) (1999) Earthworm Management in Tropical Agroecosystems. Wallingford, UK: CAB International PressGoogle Scholar
  40. Le Bayon RC & Binet F. (1999) Rainfall effects on erosion of earthworm casts and phosphorus transfers by water runoff. Biol Fertil Soils 30: 7–13CrossRefGoogle Scholar
  41. Lewis DH (1985) Symbiosis and mutualism: crisp concepts and soggy semantics. In: Boucher DH (ed) Biology of Mutualism, pp 29–43. Beckenham: Croom HelmGoogle Scholar
  42. Mando A & Miedema R (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Appl Soil Ecol 6(3): 241–249CrossRefGoogle Scholar
  43. Martin A (1991) Short-and long-term effects of the endogeic earhworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biol Fertil Soil 11: 234–238CrossRefGoogle Scholar
  44. Martin A, Mariotti A, Balesdent J & Lavelle P (1991) Soil organic matter assimilaion by a geophagous tropical earthworm based on 13C measurements. Ecology 73(1): 118–128CrossRefGoogle Scholar
  45. Martin A & Lavelle P (1992) Effect of soil organic matter quality on its assimilation by Millsonia anomala, a tropical geophagous earthworm. Soil Biol Biochem 24: 1535–1538CrossRefGoogle Scholar
  46. Martin A, Balesdent J & Mariotti A (1992) Earthworm diet related to soil organic matter dynamics through 13C measurements. Oecologia 91: 23–29Google Scholar
  47. Martius C (1994) Diversity and ecology of termites in Amazonian forests. Pedobiologia 38: 407–428Google Scholar
  48. M'ba C (1987) Vermicomposting and biological N-fixation. In: Szegi J (ed) Symposium on Soil Biology and Conservation of the Biosphere, pp 547–552. Budapest: Akademiai KiadoGoogle Scholar
  49. Parmelee RW, Bohlen PJ & Blair J (1998) Earthworms and nutrient cycling processes: Integrating across the ecological hierarchy. In: Edwards CS (ed) Earthworm Ecology, pp 123–143. Boca Raton: St. Lucie PressGoogle Scholar
  50. Pashanasi B, Lavelle P & Alegre J (1996) Effect of inoculation with the endogeic earthworm Pontocolex corethrurus on soil chemical characteristics and plant growth in a low-input agricultural system of Peruvian Amazonia. Soil Biol Biochem 28(6): 801–810CrossRefGoogle Scholar
  51. Pashanasi B, Melendez G, Szott L & Lavelle P (1992) Effect of Inoculation with the Endogeic Earthworm Pontoscolex Corethrurus (Glossoscolecidae) on N Availability, SoilMicrobial Biomass and the Growth of Three Tropical Fruit Tree Seedlings in a Pot Experiment. Soil Biol Biochem 24(12): 1655–1659CrossRefGoogle Scholar
  52. Rossi JP (1998) Rôle fonctionnel de la distribution spatiale des vers de terre dans une savane humide de Côte d'Ivoire. Doctorate thesis, University Paris VIGoogle Scholar
  53. Scheu S (1993) Litter microflora soil macrofauna interactions in lignin decomposition - a laboratory experiment with C-14–labelled lignin. Soil Biol Biochem 25(12): 1703–1711CrossRefGoogle Scholar
  54. Spain AV, Safigna PG & Wood AW (1990) Tissue carbon sources for Pontoscolex corethrurus (Oligochaeta, Glossoscolecidae) in a sugarcane ecosystem. Soil Biol Biochem 22: 703–706CrossRefGoogle Scholar
  55. Spain AV and Reddell P 1996 Δ 13C values of selected termites (Isoptera) and termite-modified materials. Soil Biol Biochem 28: 1585–1593CrossRefGoogle Scholar
  56. Spain V & Okello-Oloya T (1985) Variation in the growth of two pasture plants on soils associated with the termitaria of Amitermes laurensis (Isoptera: Termitinae). 4th Australian Conference on Grassland Invertebrates Ecology, Lincoln College, Canterbury, 13-17 May 1985, Caxton PressGoogle Scholar
  57. Swift MJ, Heal OW & Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Oxford: Blackwell ScientificGoogle Scholar
  58. Tayasu I, Subimoto A, Wada E & Abe T (1994). Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81: 229–231CrossRefGoogle Scholar
  59. Toutain F (1987) Activité biologique des sols, modalités et lithodépendance. Biol Fertil Soils 3: 31–38CrossRefGoogle Scholar
  60. Villenave C, Charpentier F, Lavelle P, Feller C, Brossard M, Brussaar L, Pashanasi B, Barois I & Albrecht A (1999) Effects of earthworms on soil organic matter and nutrient dynamics. In: Lavelle P, Brussaard L and Hendrix P (eds) Earthworm Management in Tropical Agroecosystems, pp 173–197. Wallingford, UK: CAB International PressGoogle Scholar
  61. Wood TG (1978) Food and feeding habits of termites. In: Brian MV (ed) Production Ecology of Ants and Termites, pp 55–80. Cambridge: Cambridge University PressGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Patrick Lavelle
    • 1
    Email author
  • Eleusa Barros
    • 2
  • Eric Blanchart
    • 2
  • George Brown
    • 2
  • Thierry Desjardins
    • 2
  • Lucero Mariani
    • 2
  • Jean-Pierre Rossi
    • 2
  1. 1.IRDBondy CedexFrance
  2. 2.IRDBondy CedexFrance

Personalised recommendations