, Volume 112, Issue 1, pp 1–8 | Cite as

An introduction to microevolution: rate, pattern, process

  • A.P. Hendry
  • M.T. Kinnison


This special issue of Genetica brings together a diverse collection of contributions that examine evolution within and among populations (i.e., microevolution), and the role that microevolution plays in the formation of new species and morphological forms (i.e., macroevolution). Many of the papers present evidence of microevolution occuring over contemporary time frames, further validating the near ubiquity of ongoing evolution in the world around us. Several synthetic reviews of empirical work help to define the conditions under which microevolution is or is not likely to occur. Some of the studies speak directly to current controversies in evolutionary biology, such as the relative roles of determinism and contigency, and the nature of the relationship between microevolution and macroevolution. In general, microevolution seems driven largely by deterministic mechanisms, particularly natural selection, but contingency plays a role in (1) determining whether or not suitable conditions are present for evolution to proceed, and (2) guiding the precise manner by which evolution proceeds. Several theoretical treatments and empirical reviews confirm previous research in showing that microevolutionary processes are at least capable of generating macroevolutionary trends. Macroevolution may indeed reflect microevolution writ large but the pattern by which it arises is perhaps best charcaterized as microevolution writ in fits and starts.

adaptation adaptive radiation contingency determinism evolutionary rates macroevolution microevolution natural selection speciation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, A.F., E.D. Brodie III & L.H. Rieseberg, 2001. Possible consequences of genes of major effect: transient changes in the G-matrix. Genetica 112-113: 33–43.Google Scholar
  2. Antonovics, J., A.D. Bradshaw & R.G. Turner, 1971. Heavy metal tolerance in plants. Adv. Ecol. Res. 7: 1–85.Google Scholar
  3. Arnold, S.J., M.E. Pfrender & A.G. Jones, 2001. The adaptive landscape as a conceptual bridge between micro-and macroevolution. Genetica 112-113: 9–32.Google Scholar
  4. Avise, J.C., 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York.Google Scholar
  5. Baquero, F. & J. Blazquez, 1997. Evolution of antibiotic resistance. Trends Ecol. Evol. 12: 482–487.Google Scholar
  6. Barton, N. & L. Partridge, 2000. Limits to natural selection. BioEssays 22: 1075–1084.Google Scholar
  7. Bell, M., 2001. Lateral plate evolution in the threespine stickleback: getting nowhere fast. Genetica 112–113: 445–461.Google Scholar
  8. Bennett, K.D., 1997. Evolution and Ecology: The Pace of Life. Cambridge University Press, Cambridge.Google Scholar
  9. Bone, E. & A. Farres, 2001. Trends and rates of microevolution in plants. Genetica 112–113: 165–182.Google Scholar
  10. Carroll, R.L., 2000. Towards a new evolutionary synthesis. Trends Ecol. Evol. 15: 27–32.Google Scholar
  11. Carroll, S.P., H. Dingle, T.R. Famula & C.W. Fox, 2001. Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug, Jadera haematoloma. Genetica 112–113: 257–272.Google Scholar
  12. Charlesworth, B., R. Lande & M. Slatkin, 1982. A neo-Darwinian commentary on macroevolution. Evolution 36: 474–498.Google Scholar
  13. Conover, D.O. & E.T. Schultz, 1995. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 10: 248–252.Google Scholar
  14. Conway Morris, S., 1998. The Crucible of Creation. Oxford University Press, Oxford.Google Scholar
  15. Darwin, C., 1859. On the Origin of Species. John Murray, London.Google Scholar
  16. Day, T., 2001. Population structure inhibits evolutionary diversification under competition for resources. Genetica 112–113: 71–86.Google Scholar
  17. Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia University Press, New York.Google Scholar
  18. Endler, J.A., 1980. Natural selection on color patterns in Poecilia reticulata. Evolution 34: 76–91.Google Scholar
  19. Endler, J.A., 1986. Natural Selection in the Wild. Princeton University Press, Princeton.Google Scholar
  20. Endler, J.A., 1995. Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol. Evol. 10: 22–29.Google Scholar
  21. Felsenstein, J., 1985. Phylogenies and the comparative method. Am. Nat. 125: 1–15.Google Scholar
  22. Filchak, K.E., J.B. Roethele & J.L. Feder, 2000. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407: 739–742.Google Scholar
  23. Filipchenko, I.A., 1927. Variabilität und variation (Variability and Variation). Gebrüder Borntraeger, Berlin.Google Scholar
  24. Filipchenko, I.A., 1929. Izmenchivost' I metody ee izucheniia (Variation and Methods for its Study), Gosizdat, Leningrad, 4th edn.Google Scholar
  25. Fisher, R.A., 1930. The Genetical Theory of Natural Selection. The Clarendon Press, Oxford.Google Scholar
  26. Gavrilets, S., 2000. Waiting time to parapatric speciation. Proc. R. Soc. Lond. B 267: 2483–2492.Google Scholar
  27. Gilchrist, G.W., R.B. Huey & L. Serra, 2001. Rapid evolution of wing size clines in Drosophila subobscura. Genetica 112–113: 273–286.Google Scholar
  28. Gingerich, P.D., 2001. Rates of evolution on the time scale of the evolutionary process. Genetica 112–113: 127–144.Google Scholar
  29. Goldschmidt, R., 1940. The Material Basis of Evolution. Yale University Press, New Haven.Google Scholar
  30. Gomulkiewicz, R. & R.D. Holt, 1995. When does evolution by natural selection prevent extinction? Evolution 49: 201–207.Google Scholar
  31. Gould, S.J., 1989. Wonderful Life. W.W. Norton & Company Inc., New York.Google Scholar
  32. Gould, S.J. & N. Eldredge, 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3: 115–151.Google Scholar
  33. Grant, P.R. & B.R. Grant, 1995. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49: 241–251.Google Scholar
  34. Grant, P.R., B.R. Grant & K. Petren, 2001. A population founded by a single pair of individuals: establishment, expansion and evolution. Genetica 112–113: 359–382.Google Scholar
  35. Haldane, J.B.S., 1932. The Causes of Evolution. Longman, Greens & Co., London.Google Scholar
  36. Hansen, T.F. & E.P. Martins, 1996. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50: 1404–1417.Google Scholar
  37. Haugen, T.O. & L.A. Vøllestad, 2001. A century of life-history evolution in grayling. Genetica 112–113: 475–491.Google Scholar
  38. Hendry, A.P., 2001. Adaptive divergence and the evolution of reproductive isolation in the wild: an empirical demonstration using introduced sockeye salmon. Genetica 112–113: 515–534.Google Scholar
  39. Hendry, A.P. & M.T. Kinnison, 1999. The pace of modern life: measuring rates of contemporary microevolution. Evolution 53: 1637–1653.Google Scholar
  40. Hendry, A.P., J.K. Wenburg, P. Bentzen, E.C. Volk & T.P. Quinn, 2000. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290: 516–518.Google Scholar
  41. Houle, D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204.Google Scholar
  42. Huey, R.B., G.W. Gilchrist, M.L. Carlson, D. Berrigan & L. Serra, 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308–309.Google Scholar
  43. Huxley, J., 1942. Evolution, the Modern Synthesis. Allen and Unwin, London.Google Scholar
  44. Irwin, D.E., S. Bensch & T.D. Price, 2001. Speciation in a ring. Nature 409: 333–337.Google Scholar
  45. Irwin, D.E., J.H. Irwin & T.D. Price, 2001. Ring species as bridges between microevolution and speciation. Genetica 112–113: 223–243.Google Scholar
  46. Jablonski, D., 2000. Micro-and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology 26 (suppl.): 15–52.Google Scholar
  47. Johnson, N.A. & A.H. Porter, 2001. Toward a new synthesis: population genetics and evolutionary developmental biology. Genetica 112–113: 45–58.Google Scholar
  48. Kettlewell, H.B.D., 1973. The Evolution of Melanism. Clarendon Press, Oxford.Google Scholar
  49. Kingsolver, J.G., H.E. Hoekstra, J.M. Hoekstra, D. Berrigan, S.N. Vignieri, C.E. Hill, A. Hoang, P. Gibert & P. Beerli, 2001. The strength of phenotypic selection in natural popualations. Am. Nat. 157: 245–261.Google Scholar
  50. Kingsolver, J.G., R. Gomulkiewicz & P.A. Carter, 2001. Variation, selection and evolution of function-valued traits. Genetica 112–113: 87–104.Google Scholar
  51. Kinnison, M.T. & A.P. Hendry, 2001. The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112–113: 145–164.Google Scholar
  52. Kinnison, M.T., M.J. Unwin, A.P. Hendry & T.P. Quinn, 2001. Migratory costs and the evolution of egg size and number in introduced and indigenous salmon populations. Evolution 55: 1656–1667.Google Scholar
  53. Kirkpatrick, M., 1982. Quantum evolution and punctuated equilibria in continuous genetic characters. Am. Nat. 119: 833–848.Google Scholar
  54. Kondrashov, A.S. & F.A. Kondrashov, 1999. Interactions among quantitative traits in the course of sympatric speciation. Nature 400: 351–354.Google Scholar
  55. Lack, D., 1947. Darwin' Finches. Cambridge University Press, Cambridge.Google Scholar
  56. Lande, R. & S.J. Arnold, 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.Google Scholar
  57. R., O. Seehausen & J.J.M. van Alphen, 2001. Mechanisms of rapid sympatric speciation by sex reversal and sexual selection in cichlid fish. Genetica 112–113: 435–443.Google Scholar
  58. Lewontin, R.C., 1974. The Genetic Basis of Evolutionary Change. Columbia University Press New York.Google Scholar
  59. Losos, J.B., T.R Jackman, A. Larson, K. de Queiroz & L. Rodríguez-Schettino, 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279: 2115–2118.Google Scholar
  60. Losos, J.B., T.W. Schoener, K.I. Warheit & D. Creer, 2001. Experimental studies of adaptive differentiation in Bahamian Anolis lizards. Genetica 112–113: 399–415.Google Scholar
  61. Losos, J.B., K.I. Warheit & T.W. Schoener, 1997. Adaptive differentiation following experimental island colonization in Anolis lizards. Nature 387: 70–73.Google Scholar
  62. Lynch, M., 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136: 727–741.Google Scholar
  63. Magurran, A.E., 2001. Sexual conflict and evolution in Trinidadian guppies. Genetica 112–113: 463–474.Google Scholar
  64. Majerus, M.E.N., 1998. Melanism: Evolution in Action. Oxford University Press, Oxford.Google Scholar
  65. Maynard Smith, J., 1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge.Google Scholar
  66. Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York.Google Scholar
  67. Merilä, J., B.C. Sheldon & L.E.B. Kruuk, 2001. Explaining stasis: microevolutionary studies in natural populations. Genetica 112–0113: 199–222.Google Scholar
  68. Merilä, J., L.E.B. Kruuk & B.C. Sheldon, 2001. Cryptic evolution in a wild bird population. Nature 412: 76–79.Google Scholar
  69. T.A. & D.A. Roff, 1987. Natural selection and the heritability of fitness components. Heredity 59: 181–197.Google Scholar
  70. H.A. & L.H. Orr, 1996. Waiting for speciation: the effect of population subdivision on the time to speciation. Evolution 50: 1742–1749.Google Scholar
  71. Pergams, O.R.W. & M.V. Ashley, 2001. Microevolution in island rodents. Genetica 112–113: 245–256.Google Scholar
  72. Polly, P.D., 2001. On morphological clocks and paleophylogeography: towards a timescale for Sorex hybrid zones. Genetica 112–113: 339–357.Google Scholar
  73. Provine, W.B., 1971.The Origins of Theoretical Population Genetics. University of Chicago Press, Chicago.Google Scholar
  74. Quinn, T.P., M.T. Kinnison & M.J. Unwin, 2001. Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process. Genetica 112–113: 493–513.Google Scholar
  75. Raymond, M., C. Berticat, M. Weill, N. Pasteur & C. Chevillon, 2001. Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113: 287–296.Google Scholar
  76. Rensch, B., 1954. Neuere probleme der abstammungslehre. Ferdinand Enke Verlag, Stuttgart.Google Scholar
  77. Reznick, D.N. & C.K. Ghalambor, 2001. The population ecology of contemporary adaptations: what do empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113: 183–198.Google Scholar
  78. Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.Google Scholar
  79. Riechert, S.E., F.D. Singer & T.C. Jones, 2001. High gene flow levels lead to gamete wastage in a desert spider system. Genetica 112–113: 297–319.Google Scholar
  80. Rundle, H.D., L. Nagel, J.W. Boughman & D. Schluter, 2000. Natural selection and parallel speciation in sympatric sticklebacks. Science 287: 306–308.Google Scholar
  81. Schluter, D., 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50: 1766–1774.Google Scholar
  82. Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.Google Scholar
  83. Schwartz, J.H., 1999. Sudden Origins: Fossils, Genes, and the Emergence of Species. Wiley, New York.Google Scholar
  84. Sheets, H.D. & C.E. Mitchell, 2001. Why the null matters: statistical tests, random walks and evolution. Genetica 112–113: 105–125.Google Scholar
  85. Simpson, G.G., 1944. Tempo and Mode in Evolution. Columbia University Press, New York.Google Scholar
  86. Simpson, G.G., 1953. The Major Features of Evolution. Columbia University Press, New York.Google Scholar
  87. Sinervo, B., 2001. Runaway social games, genetic cycles driven by alternative male and female strategies, and the origin of morphs. Genetica 112–113: 417–434.Google Scholar
  88. Smith, T.B., C.J. Schneider & K. Holder, 2001. Refugial isolation versus ecological gradients: testing alternative mechanisms of evolutionary divergence in four rainforest vertebrates. Genetica 112–113: 383–398.Google Scholar
  89. Snaydon, R.W., 1970. Rapid population differentiation in a mosaic environment I: the response of Anthoxanthum odoratum populations to soils. Evolution 24: 257–269.Google Scholar
  90. Stanley, S.M., 1979. Macroevolution, Pattern and Process. W.H. Freeman, San Francisco.Google Scholar
  91. Stearns, S.C., 1983a. A natural experiment in life-history evolution: field data on the introduction of mosquitofish (Gambusia affinis) to Hawaii. Evolution 37: 601–617.Google Scholar
  92. Stearns, S.C., 1983b. The genetic basis of differences in life-history traits among six populations of mosquitofish (Gambusia affinis) that shared ancestors in 1905. Evolution 37: 618–627.Google Scholar
  93. Stern, D.L., 2000. Evolutionary developmental biology and the problem of variation. Evolution 54: 1079–1091.Google Scholar
  94. Tabashnik,B.E., 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47–79.Google Scholar
  95. Taylor, E.B. & J.D. McPhail, 2000. Historical contingency and ecological determinism interact to prime speciation in sticklebacks, Gasterosteus. Proc. R. Soc. Lond. B 267: 2375–2384.Google Scholar
  96. Trussell, G.C. & R.J. Etter, 2001. Integrating genetic and environmental forces that shape the evolution of geographic variation in a marine snail. Genetica 112–113: 321–337.Google Scholar
  97. Via, S., A.C. Bouck & S. Skillman, 2000. Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution 54: 1626–1637.Google Scholar
  98. Wade, M.J., 2001. Epistasis, complex traits, and mapping genes. Genetica 112–113: 59–69.Google Scholar
  99. S., 1968. Evolution and the Genetics of Populations. University Chicago Press, Chicago.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • A.P. Hendry
    • 1
  • M.T. Kinnison
    • 2
  1. 1.Organismic and Evolutionary Biology ProgramUniversity of MassachusettsAmherstUSA
  2. 2.Department of Biological SciencesUniversity of MaineOronoUSA

Personalised recommendations