Behavior Genetics

, Volume 31, Issue 6, pp 637–651

Longitudinal Genetic Analysis of EEG Coherence in Young Twins

  • G. C. M. van Baal
  • D. I. Boomsma
  • E. J. C. de Geus


During middle childhood, continuous changes occur in electroencephalogram (EEG) coherence, an index of cortico-cortical connectivity of the brain. In the gradual development of EEG coherence, occasional “growth spurts” are observed which coincide with periods of discontinuous development in cognition. Discontinuous development may reflect changes in the genetic architecture of a trait over time, for instance, by the emergence of new genetic factors. To examine stability and change in genetic and environmental influences on EEG coherence from ages 5 to 7 years, intrahemispheric EEG coherences from 14 connections were collected twice in 209 twin pairs. Overall, heritabilities (h2) were moderate to high for all EEG coherences at both ages (average: 58%). For occipito-cortical connections in the right hemisphere, h2 increased with age due to a decrease in environmental variance. For prefronto-cortical connections in the left hemisphere, h2 decreased with age due to a decrease in genetic variance. New genetic factors at age 7 were found for prefronto-parietal coherence, and centro-occipital and parieto-occipital EEG coherences in both hemispheres and, in the left hemisphere, for prefronto-frontal EEG coherences. Mean genetic correlation for these cortico-cortical connections over time was 0.72, indicating that at least part of the genetic influences is age-specific. We argue that this is convincing evidence for the existence of stage-wise brain maturation from years 5 to 7, and that growth spurts in EEG coherence may be part of the biological basis for discontinuous cognitive development at that age range.

Electroencephalogram brain endophenotype development heritability reliability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boomsma, D. I., and van Baal, G. C. M. (1998). Genetic influences on childhood IQ in 5-and 7-year old Dutch twins. Dev. Neuropsychol. 14: 115–126.Google Scholar
  2. Boomsma, D. I., Orlebeke, J. F., and van Baal, G. C. M. (1992). The Dutch Twin Register: Growth data on weight and height. Behav. Gen. 22: 247–251.Google Scholar
  3. Brillinger, D. (1975). Time series. Data analyses and theory. London, Holt, Rinehart and Winston.Google Scholar
  4. Changeux, J., and Danchin, A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264: 705–712.Google Scholar
  5. Changeux, J., and DeHaene, S. (1989). Neuronal models of cognitive functions. Cognition 33: 63–109.Google Scholar
  6. Chen C., and Tonegawa S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Ann. Rev. Neurosci. 20: 157–184.Google Scholar
  7. Cherny, S., and Cardon, L. (1994). General cognitive ability. In J. DeFries, R. Plomin and D. Fulker (eds.), Nature and nurture during middle childhood. Oxford, Blackwell Publishers, pp. 46–50.Google Scholar
  8. Chugani, H., Phelps, M., and Mazziotta, J. (1987). Positron emission tomography study of human brain functional development. Ann. Neurol. 22: 487–497.Google Scholar
  9. Chugani, H. (1994). Development of regional brain glucose metabolism in relation to behavior and plasticity. In G. Dawson, and K. Fischer (eds.), Human behavior and the developing brain. New York, Guilford, pp. 153–175.Google Scholar
  10. Chugani, H. (1998). Biological basis of emotions: Brain systems and brain development. Pediatrics 102: 1225–1229.Google Scholar
  11. Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Harwood M., Hinds, S., and Press, G. A. (2000). Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216(3): 672–682.Google Scholar
  12. Dolan, C. V., Molenaar, P. C. M., and Boomsma, D. I. (1991). Simultaneous genetic analysis of lingitudinal means and covariance structure in the simplex model using twin data. Behav. Gen. 21: 49–65.Google Scholar
  13. Falconer, D. S., and Mackay (1996). Introduction to quantitative genetics (4th ed.). New York, Wiley.Google Scholar
  14. French, C., and Beaumont, J. (1984). A critical review of EEG coherence studies of hemispheric function. Int. J. Psychophysiol. 1: 241–254.Google Scholar
  15. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., and Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nat. Neurosci. 2: 861–863.Google Scholar
  16. Goldman-Rakic, P. (1987). Development of cortical circuitry and cognitive function. Child Dev. 58: 601–622.Google Scholar
  17. Greenough, W., Black, J., and Wallace, C. (1987). Experience and brain development. Child Dev. 58: 539–559.Google Scholar
  18. Griffiths, I. R., Montague, P., and Dickinson, P. (1995). The proteolipid protein gene. Neuropathol. Appl. Neurobiol. 21: 85–96.Google Scholar
  19. Gur R. C., Turetsky B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., and Gur, R. E. (1999). Sex differences in brain gray and white matter in healthy youn adults: correlations with cognitive performance. J. Neurosci. 19: 4065–4072.Google Scholar
  20. Huttenlocher, P. (1979). Synaptic density in human frontal cortex: Developmental changes and effects of aging. Brain Res. 163: 195–205.Google Scholar
  21. Huttenlocher, P. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia 28: 517–527.Google Scholar
  22. Huttenlocher, P. (1994). Synaptogenesis in human cerebral cortex. In G. Dawson and K. Fischer, W. (eds.), Human behavior and the developing brain. New York, Guilford, pp. 137–152.Google Scholar
  23. Ibatoullina, A., Vardaris, R., and Thompson, L. (1994). Genetic and environmental influences on the coherence of background and orienting response EEG in children. Intelligence 19: 65–78.Google Scholar
  24. Ikenaka, K., and Kagawa, T. (1995). Transgenic systems in studying myelin gene expression. Dev. Neurosci. 17: 127–136.Google Scholar
  25. Jasper, H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroenceph. Clin. Neurophysiol. 10: 370–375.Google Scholar
  26. Jernigan, T., Archibald, S., Berhow, M., Sowell, E., Foster, D., and Hesselink, J. (1991). Cerebral structure on MRI: I, Localization of age-related changes. Biol. Psychiat. 29(1): 55–67.Google Scholar
  27. Kaiser, J., and Gruzelier, J. (1996). Timing of puberty and EEG coherence during photic stimulation. Int. J. Psychophysiol. 21: 135–149.Google Scholar
  28. Klintsova, A. Y., and Greenough, W. T., (1999). Synaptic plasticity in cortical systems. Curr. Opin. Neurobiol. 9: 203–208.Google Scholar
  29. Martin, N. G., Eaves, L. J., Kearsey, M. J., and Davies, P. (1978). The power of the classical twin study. Heredity 40: 97–116.Google Scholar
  30. Mather, K., and Jinks, J. L. (1977). Introduction to biometrical genetics. London, Chapman and Hall.Google Scholar
  31. Neale, M. C., and Cardon, L. R. (1992). Methodology for genetic studies of twins and families. In Series D: Behavioral and Social Sciences. Dordrecht: Kluwer Academic Publishers.Google Scholar
  32. Neale, M., and Miller, M. (1997). The use of likelihood-based confidence intervals in genetic models. Behav. Gen. 27: 113–120.Google Scholar
  33. Neale, M. C., Boker, S. M., Xie, G., and Maes, H. H. (1999). Mx: Statistical Modeling. (5th ed.). Box 126 MCV, Richmond, VA 23298: Department of Psychiatry.Google Scholar
  34. Niedermeyer, E., and Lopes da Silva, F. (1993). Electroencephalography: Basic principles, clinical applications and related fields (3rd ed.). Baltimore: Williams and Wilkins.Google Scholar
  35. Nunez, P. (1981). Electric fields of the brain. The neurophysics of EEG. New York, Oxford University Press.Google Scholar
  36. Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., Rapoport, J. L., and Evans, A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science 283: 1908–1911.Google Scholar
  37. Pfefferbaum, A., Mathalon, D., Sullivan, E., Rawles, J., Zipursky, R., and Lim, K. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch. Neurol. 51(9): 874–887.Google Scholar
  38. Piaget, J. (1966). The psychology of intelligence. Totowa, NJ, Littlefield, Adams.Google Scholar
  39. Piaget, J., and Inhelder, B. (1969). The psychology of the child. New York: Basic Books.Google Scholar
  40. Pivik, R., Broughton, R., Coppola, R., Davidson, R., Fox, N., and Nuwer, M. (1993). Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology 30: 547–558.Google Scholar
  41. Posthuma D., and Boomsma, D. I. (2000). A note on the statistical power in extended twin designs. Behav. Gen. 30: 147–158.Google Scholar
  42. Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., and Denckla M. B. (1996). Brain development, gender and IQ in children: A volumetric imaging study. Brain 119: 1763–1774.Google Scholar
  43. Szentagothai, J. (1978). The neural network of the cerebral cortex: A functional interpretation. Proc. Royal Soc. London 201: 219–248.Google Scholar
  44. Thatcher, R. W., Krause, P., and Hrybyk, M. (1986). Cortico-cortical associations and EEG coherence: A two-compartmental model. Electroenceph. Clin. Neurophysiol. 64: 123–143.Google Scholar
  45. Thatcher, R. W., Walker, R., and Guidice, S. (1987). Human cerebral hemispheres develop at different rates and ages. Science 236: 1110–1113.Google Scholar
  46. Thatcher, R. W. (1991). Maturation of the human frontal lobes: Physiological evidence for staging. Dev. Neuropsychol. 7(3): 370–394.Google Scholar
  47. Thatcher, R. W. (1992). Cyclic cortical reorganization during early childhood. Brain Cog. 20: 24–50.Google Scholar
  48. Thatcher, R. W. (1994a). Psychopathology of early frontal lobe damage: Dependence on cycles of development. Dev. Psychopathol. 6: 565–596.Google Scholar
  49. Thatcher, R. W. (1994b). Cyclic cortical reorganization, origins of human cognitive development. In G. Dawson and K. Fischer (eds.), Human behavior and the developing brain. New York, Guilford, pp. 232–266.Google Scholar
  50. Ungerleider, L. G., and Haxby, J. V. (1994). What and where in the human brain. Curr. Opin. Neurobiol. 4: 157–165.Google Scholar
  51. Ungerleider, L. G., Courtney, S. M., and Haxby, J. V. (1998). A neural system for human visual working memory. Proc. Natl. Acad. Sci. USA 95: 883–890.Google Scholar
  52. van Baal, G. C. M., de Geus, E. J. C., and Boomsma, D. I. (1996). Genetic architecture of EEG power spectra in early life. Electroencephal. Clin. Neurophysiol. 98(6): 1–13.Google Scholar
  53. van Baal, G. C. M., de Geus, E. J. C., and Boomsma, D. I. (1998). Genetic influences on EEG coherence in 5-year-old twins. Behav. Gen. 28: 9–19.Google Scholar
  54. van Baal, G. C. M., Boomsma, D. I., and de Geus, E. J. C. (in press). Genetics of electroencephalographic coherence and intelligence in young twins (abstract). Behav. Gen. Google Scholar
  55. van Beijsterveldt, C. E. M., Molenaar, P. C. M., de Geus, E. J. C., and Boomsma, D. I. (1998). Genetic and environmental influences on EEG coherence. Behav. Gen. 20: 443–453.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • G. C. M. van Baal
    • 1
  • D. I. Boomsma
    • 1
  • E. J. C. de Geus
    • 1
  1. 1.Department of Biological PsychologyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations