Journal of Philosophical Logic

, Volume 30, Issue 6, pp 525–570 | Cite as

Infinitary Belief Revision

  • Dongmo Zhang
  • Norman Foo

Abstract

This paper extends the AGM theory of belief revision to accommodate infinitary belief change. We generalize both axiomatization and modeling of the AGM theory. We show that most properties of the AGM belief change operations are preserved by the generalized operations whereas the infinitary belief change operations have their special properties. We prove that the extended axiomatic system for the generalized belief change operators with a Limit Postulate properly specifies infinite belief change. This framework provides a basis for first-order belief revision and the theory of revising a belief state by a belief state.

belief revision belief contraction theory change multiple belief change first-order belief change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Alchourrón, E., Gärdenfors, P. and Makinson, D.: On the logic of theory change: partial meet contraction and revision functions, J. Symbolic Logic 50(2) (1985), 510–530.Google Scholar
  2. 2.
    Foo, N. and Zhang, D.: Convergency of iterated belief changes, in M. Thielscher (ed.), The 3rd Workshop on Nonmonotonic Reasoning, Action, and Change, 1999, pp. 73–77.Google Scholar
  3. 3.
    Freund, M. and Lehmann, D.: Nonmonotonic reasoning: from finitary relations to infinitary inference operations, Studia Logica 2(53) (1994), 161–201.Google Scholar
  4. 4.
    Fuhrmann, A.: Relevant Logics, Modal Logics and Theory Change, Doctoral Dissertation, Department of Philosophy and Automated Reasoning Project, Australian National University, 1988.Google Scholar
  5. 5.
    Fuhrmann, A.: An Essay on Contraction, Cambridge University Press, 1997.Google Scholar
  6. 6.
    Fuhrmann, A. and Hansson, S. O.: A survey of multiple contractions, J. Logic, Language, and Information 3 (1994), 39–76.Google Scholar
  7. 7.
    Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States, The MIT Press, 1988.Google Scholar
  8. 8.
    Gärdenfors, P. and Makinson, D.: Revisions of knowledge systems using epistemic entrenchment, in M. Vardi (ed.), Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge, Morgan Kaufmann Publ., Los Altos, CA, 1988, pp. 83–95.Google Scholar
  9. 9.
    Gärdenfors, P. and Rott, H.: Belief revision, in D. M. Gabbay, C. J. Hogger and J. A. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, Clarendon Press, Oxford, 1995, pp. 35–132.Google Scholar
  10. 10.
    Grove, A.: Two modelings for theory change, J. Philos. Logic 17 (1988), 157–170.Google Scholar
  11. 11.
    Hansson, S. O.: A dyadic representation of belief, in P. Gärdenfors (ed.), Belief Revision, Cambridge University Press, 1992, pp. 89–121.Google Scholar
  12. 12.
    Herre, H.: Compactness properties of nonmonotonic inference operations, in C. MacNish, D. Pearce and L. M. Pereira (eds.), Logics in Artificial Intelligence, LNAI 838, Springer-Verlag, 1994, pp. 19–33.Google Scholar
  13. 13.
    Konieczny, S. and Pino-Pérez, R.: On the logic of merging, in Principles of Knowledge Representation and Reasoning: Proceedings of the 6th International Conference (KR'98), Morgan Kaufmann, 1998, 488–498.Google Scholar
  14. 14.
    Lindström, S.: A semantic approach to nonmonotonic reasoning: inference operations and choice, Uppsala Prints and Preprints in Philosophy, No. 10, 1994.Google Scholar
  15. 15.
    Makinson, D.: General patterns in nonmonotonic reasoning, in D. Gabbay (ed.), Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford University Press, 1993, pp. 35–110.Google Scholar
  16. 16.
    Makinson, D. and Gärdenfors, P.: Relations between the logic of theory change and nonmonotonic logic, in A. Fuhrmann and M. Morreau (eds.), The Logic of Theory Change, LNCS 465, Springer-Verlag, 1991, pp. 185–205.Google Scholar
  17. 17.
    Nayak, A.: Iterated belief change based on epistemic entrenchment, Erkenntnis 41 (1994), 353–390.Google Scholar
  18. 18.
    Niederèe, R.: Multiple contraction: a further case against Gärdenfors’ principle of recovery, in A. Fuhrmann and M. Morreau (eds.), The Logic of Theory Change, LNCS 465, Springer-Verlag, 1991, pp. 322–334.Google Scholar
  19. 19.
    Peppas, P.: Well behaved and multiple belief revision, in W. Wahlster (ed.), Proceedings of the 12th European Conference on Artificial Intelligence (ECAI-96), pp. 90–94.Google Scholar
  20. 20.
    Revesz, P. Z.: On the semantics of arbitration, Internat. J. Algebra Comput. 7(2) (1997), 133–160.Google Scholar
  21. 21.
    Rott, H.: Modelings for belief change: base contractions, multiple contractions, and epistemic entrenchment, in Logic in AI, LNAI 633, Springer-Verlag 1992, pp. 139–153.Google Scholar
  22. 22.
    Williams, M.: Transmutations of knowledge systems, in J. Doyle, E. Sandewall and P. Torasso (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International Conference (KR'94), Morgan Kaufman, 1994, pp. 619–629.Google Scholar
  23. 23.
    Zhang, D.: Belief revision by sets of sentences, J. Comput. Sci. Technol. 11(2) (1996), 108–125.Google Scholar
  24. 24.
    Zhang, D., Chen, S., Zhu, W. and Chen, Z.: Representation theorems for multiple belief changes, in M. Pollack (ed.), Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97), Morgan Kaufman, pp. 89–94.Google Scholar
  25. 25.
    Zhang, D., Chen, S., Zhu,W. and Li, H.: Nonmonotonic reasoning and multiple belief revision, in M. Pollack (ed.), Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97), Morgan Kaufman, pp. 95–100.Google Scholar
  26. 26.
    Zhang, D.: What could a natural deductive system for nonmonotonic reasoning look like? in M. Williams (ed.), The Third Australian Commonsense Reasoning Workshop, 1999, pp. 160–173.Google Scholar
  27. 27.
    Zhang, D., Zhu, Z. and Chen, S.: Default reasoning and belief revision, The 7th International Workshop on Nonmonotonic Reasoning, 1998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Dongmo Zhang
    • 1
  • Norman Foo
    • 1
  1. 1.University of New South WalesAustralia

Personalised recommendations