Nutrient Cycling in Agroecosystems

, Volume 61, Issue 1–2, pp 131–142

Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa



Judged by their negative nutrient balances, low soil cover and low productivity, the predominant agro-pastoral farming systems in the Sudano-Sahelian zone of West Africa are highly unsustainable for crop production intensification. With kaolinite as the main clay type, the cation exchange capacity of the soils in this region, often less than 1 cmolc kg−1soil, depends heavily on the organic carbon (Corg) content. However, due to low carbon sequestration and to the microbe, termite and temperature-induced rapid turnover rates of organic material in the present land-use systems, Corg contents of the topsoil are very low, ranging between 1 and 8 g kg−1 in most soils. For sustainable food production, the availability of phosphorus (P) and nitrogen (N) has to be increased considerably in combination with an improvement in soil physical properties. Therefore, the adoption of innovative management options that help to stop or even reverse the decline in Corg typically observed after cultivating bush or rangeland is of utmost importance. To maintain food production for a rapidly growing population, targeted applications of mineral fertilisers and the effective recycling of organic amendments as crop residues and manure are essential. Any increase in soil cover has large effects in reducing topsoil erosion by wind and water and favours the accumulation of wind-blown dust high in bases which in turn improves P availability. In the future decision support systems, based on GIS, modelling and simulation should be used to combine (i) available fertiliser response data from on-station and on-farm research, (ii) results on soil productivity restoration with the application of mineral and organic amendments and (iii) our present understanding of the cause-effect relationships governing the prevailing soil degradation processes. This will help to predict the effectiveness of regionally differentiated soil fertility management approaches to maintain or even increase soil Corg levels.

clay content crop residues GIS millet mineral fertilisers soil erosion sustainability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullahi A & Lombin G (1978) Long-term fertility studies at Samaru-Nigeria: Comparative effectiveness of separate and combined applications of mineralizers and farmyard manure in maintaining soil productivity under continuous cultivation in the Savanna, Samaru, Samaru Miscellaneous Publication. No. 75, Zaria, Nigeria: Ahmadu Bello UniversityGoogle Scholar
  2. Amato M & Ladd JN (1992) Decomposition of 14C labelled glucose and legume material in soils: properties influencing the accumulation of organic residue-C and microbial biomass-C. Soil Biol Biochem 24: 455–464CrossRefGoogle Scholar
  3. Baidu-Forson J (1995) Determinants of the availability of adequate millet stover for mulching in the Sahel. J Sust Agric 5: 101–116Google Scholar
  4. Bationo A, Chien SH, Henao J, Christianson BC & Mokwunye AU (1990) Agronomic evaluation of two unacidulated and patially acidulated phosphate rocks indigenous to Niger. Soil Sci Soc Am J 54: 1772–1777CrossRefGoogle Scholar
  5. Bationo A, Christianson BC & Klaij MC (1993) The effect of crop residue and fertiliser use on pearl millet yields in Niger. Fert Res 34: 251–258CrossRefGoogle Scholar
  6. Bationo A, Buerkert A, Sedogo MP, Christianson BC & Mokwunye AU (1995) A critical review of crop residue use as soil amendment in the West African Semi-Arid Tropics. In: Powell JM, Fernandez-Rivera S, Williams TO & Renard C (eds) Livestock and Sustainable Nutrient Cycling in Mixed Farming Systems of Sub-Saharan Africa, Vol. 2, pp 305–322.Technical Papers. Proceedings of an International Conference, 22-26 November 1993.Google Scholar
  7. International Livestock Centre for Africa (ILCA), Addis Ababa, EthiopiaGoogle Scholar
  8. Bationo A, Lompo F & Koala S (1998) Research on nutrient flows and balances in West Africa: State-of-the-art. In: Smaling EMA (ed) Nutrient Balances as Indicators of Production and Sustainability in Sub-Saharan African Agriculturale. Agric Eco Environ 71: 19–36Google Scholar
  9. Bationo A, Wani S, Bielders C, Vlek PLG & Mokwunye AU (1999) Crop residue management to enhance soil productivity and conservation in the Desert Margins of West Africa. Adv in Soil Sci (submitted)Google Scholar
  10. Berger M, Belem PC, Dakoua D & Hien V (1987) Le maintien de la fertilité des sols dans l'Ouest du Burkina Faso et la nécessité de l'association agriculture-élevage. Cot Fib Trop Vol vnXLII FASC 3: 210–211Google Scholar
  11. Breman H & de Ridder N (1991) Manuel sur les pâturages des pays sahéliens. ACCT, Paris/CTA, Wageningen / KARTHALA, Paris. 485 ppGoogle Scholar
  12. Breman H (1998) Soil fertility improvement in Africa, a tool for or a by-product of sustainable production? Special Issue on Soil Fertility/African Fertiliser Market 11: 2–10Google Scholar
  13. Buerkert A, Bationo A & Dossa K (1999a) Mechanisms of residue mulch-induced cereals growth in West Africa. Soil Sci Soc Am J (accepted)Google Scholar
  14. Buerkert A & Hiernaux P (1998) Nutrients in the West African Sudano-Sahelian zone: losses, transfers and role of external inputs. J Plant Nutr Soil Sci 161: 365–383Google Scholar
  15. Buerkert A, Michels K, Lamers JPA, Marschner H & Bationo A (1996) Anti-erosive, soil physical and nutritional effects of crop residues. In: Buerkert B, Allison B E & von Oppen M (eds) Wind Erosion in Niger. Implications and Control Measures in a Millet-Based Farming System, pp 123–138. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  16. Buerkert A, Michels K & Lamers JPA (1999b) Erosion processes in the West African Sahel and their effects on soil parameters and millet growth. Plant Soil (submitted)Google Scholar
  17. Buerkert A & Stern RD (1995) Crop residue and P application affect the spatial variability of non-destructively measured millet growth in the Sahel. Expl Agric 31: 429–449CrossRefGoogle Scholar
  18. De Ridder N & van Keulen H (1990) Some aspects of the role of organic matter in sustainable intensified arable farming systems in the West African semi-arid tropics. Fert Res 26: 299–310CrossRefGoogle Scholar
  19. Evéquoz M, Soumana DK & Yadji G (1998) Minéralisation du fumier, nutrition, croissance et rendement du mil planté dans des ouvrages anti-érosifs. In: Renard G, Neef A, Becker K& von Oppen M (eds) Soil Fertility Management inWest African Land Use Systems, pp 203–208 Niamey, Niger, 4-8 March 1997. Margraf Verlag, Weikersheim, GermanyGoogle Scholar
  20. Feller C,0 Brossard M & Frossard E (1992) Caractérisation et dynamique de la matière organique dans quelques sols ferrugineux et ferrallitiques d'Afrique de l'Ouest. In: Tiessen H & Frossard E (eds), pp 94–107. Phosphorus Cycles in Terrestrial and Aquatic Ecosystems. Proceedings of a workshop arranged by the Scientific Committee on Problems of the Environment (SCOPE) and the United Nations Environmental Programme (UNEP), 18-22, March 1991. Nairobi, KenyaGoogle Scholar
  21. Fernandez-Rivera S Williams TO Hiernaux P & Powell JM (1995) Livestock, feed, and manure availability for crop production in semi-arid West Africa. In: Powell JM, Fernandez-Rivera S, Williams TO & Renard C (eds) Livestock and Sustainable Nutrient Cycling in Mixed Farming Systems of Sub-Saharan Africa, pp 149–170. Addis Ababa, Ethiopia: International Livestock Centre for AfricaGoogle Scholar
  22. Greenland DJ & Nye PH (1959) Increases in the carbon and nitrogen contents of tropical soils under natural fallows. J Soil Sci 10: 284–299CrossRefGoogle Scholar
  23. Hafner H, Bley J, Bationo A, Martin P & Marschner H (1993) Longterm nitrogen balance of pearl millet (Pennisetum glaucum L.) in an acid sandy soil of Niger. J Plant Nutr Soil Sci 256: 264–176Google Scholar
  24. Hiernaux P, Fernández-Rivera S, Schlecht E, Turner MD & Williams TO (1997) Livestock-mediated nutrient transfers in Sahelian agro-ecosystems. In: Renard G, Neef A, Becker K & von Oppen M (eds) Soil Fertility Management in West African Land Use Systems, pp 339–347. Proceedings of a Regional Workshop, University of Hohenheim, ICRISAT, INRAN, Niamey, Niger, 4-8 March 1997. Margraf Verlag, Weikersheim, GermanyGoogle Scholar
  25. Kretzschmar RM, Hafner H, Bationo A & Marschner H (1991) Long and short-term effects of crop residues on aluminum toxicity, phosphorus availability and growth of pearl millet in an acid sandy soil. Plant Soil 136: 215–223CrossRefGoogle Scholar
  26. Lamers JPA & Feil P (1993) The many uses of millet residues. ILEA Newsletter 9: 15Google Scholar
  27. Manu A, Bationo A & Geiger SC (1991) Fertility status of selected millet producing soils of West Africa with emphasis on phosphorus. Soil Sci 152: 315–320Google Scholar
  28. McClellan GH & Notholt AJG (1986) Phosphate deposits of tropical sub-Saharan Africa. In: Mokwunye AU & Vlek PLG (eds) Management of Nitrogen and Phosphorus Fertilisers of Sub-Saharan Africa, pp 173–223. Martinus Nijhoff, Dordrecht, The NetherlandsGoogle Scholar
  29. McIntire J & Fussel LK (1986) On-farm experiments with millet in Niger. III. Yields and econimic analyses. ISC (ICRISAT Sahelian Center), Niamey, NigerGoogle Scholar
  30. McIntire J, Bourzat D & Pingali P (1992) Crop-livestock interactions in Sub-Saharan Africa. Washington, DC: The World Bank.Google Scholar
  31. Michels K, Sivakumar MVK & Allison BE (1995) Wind erosion control using crop residue: II. Effects on millet establishment and yield. Field Crops Res 40: 111–118CrossRefGoogle Scholar
  32. Padwick GW (1983) The maintenance of soil fertility in tropical Africa: A review. Expl Agric 19: 293–310Google Scholar
  33. Penning de Vries FWT & Djitèye MA (1982) La productivité des pâturages sahéliens. Une étude des sols, des végétations et de l'exploitation de cette ressource naturelle. Agric. Res. Rep. 918, PUDOC, Wageningen. 523 ppGoogle Scholar
  34. Pieri C (1986) Fertilisation des cultures vivrières et fertilité des sols en agriculture paysanne subsaharienne. Agron Trop 41: 1–20Google Scholar
  35. Pieri C (1989) Fertilité des terres de savane. Bilan de trente ans de recherche et de développement agricoles au Sud du Sahara. Ministère de la Coopération. CIRAD. Paris,France. 444 ppGoogle Scholar
  36. Powell JM & Mohamed Saleem (1987) Nitrogen and phosphorus transfers in a crop-livestock system in West Africa. Agric Syst 25: 261–277CrossRefGoogle Scholar
  37. Powell JM, Ikpé FN, Somda ZC & Fernandez-Rivera S (1998) Urine effects on soil chemical properties and the impact of urine and dung on pearl millet yield. Expl Agric 34: 259–276CrossRefGoogle Scholar
  38. Rebafka F-P, Hebel A, Bationo A, Stahr K & Marschner H (1994) Short-and long-term effects of crop residues and of phosphorus fertilization on pearl millet yield on an acid sandy soil in Niger, West Africa. Field Crops Res 36: 113–124CrossRefGoogle Scholar
  39. Sedogo MP (1993) Evolution des sols ferrugineux lessivés sous culture: influences des modes de gestion sur la fertilité. Thèse de Doctorat Es-Sciences, Abidjan, Université Nationale de Côte d'IvoireGoogle Scholar
  40. Stoorvogel J & Smaling EM (1990) Assessment of soil nutrient depletion in sub-Saharan Africa: 1983-2000. Vol. 1, Main Report. The Winand Staring Center, Wageningen, The NetherlandsGoogle Scholar
  41. Williams TO, Powell JM & Fernandez-Rivera S (1995) Manure utilization, drought cycles and herd dynamics in the Sahel: Implications for crop productivity. In: Powell JM, Fernandez-Rivera S, Williams TO & Renard C (eds) Livestock and Sustainable Nutrient Cycling in Mixed Farming Systems of Sub-Saharan Africa, Vol. 2, pp 393–409. Technical Papers. Proceedings of an International Conference, 22-26 November 1993. International Livestock Centre for Africa (ILCA), Addis Ababa, EthiopiaGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Tropical Soil Biology and Fertility ProgrammeNairobiKenya
  2. 2.Institute of crop scienceuniversity of KasselWitzenhausenGermany

Personalised recommendations