Genetica

, Volume 112, Issue 1, pp 223–243 | Cite as

Ring species as bridges between microevolution and speciation

  • Darren E. Irwin
  • Jessica H. Irwin
  • Trevor D. Price
Article

Abstract

A demonstration of how small changes can lead to species-level differences is provided by ring species, in which two reproductively isolated forms are connected by a chain of intermediate populations. We review proposed cases of ring species and the insights they provide into speciation. Ring species have been viewed both as illustrations of the history of divergence of two species from their common ancestor and as demonstrations that speciation can occur in spite of gene flow between the diverging forms. Theoretical models predict that speciation with gene flow can occur when there is divergent ecological selection, and geographical differentiation increases the likelihood of speciation. Thus ring species are ideal systems for research into the role of both ecological and geographical differentiation in speciation, but few examples have been studied in detail. The Greenish warbler is a ring species in which two northward expansions around the Tibetan plateau have been accompanied by parallel evolution in morphology, ecology, and song length and complexity. However, songs have diverged in structure, resulting in a lack of recognition where the reproductively isolated forms come into contact in Siberia. Our analysis suggests that these differences could have arisen even with gene flow, and that parallel rather than divergent ecological changes have led to divergence in sexually selected traits and subsequent speciation.

circular overlap gene flow Greenish warbler Phylloscopus trochiloides ring species sexual selection song speciation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnqvist, G., M. Edvardsson, U. Friberg & T. Nilsson, 2000. Sexual conflict promotes speciation in insects. Proc. Natl. Acad. Sci. USA 97: 10460–10464.Google Scholar
  2. Baker, K., 1997. Warblers of Europe, Asia, and North Africa. Princeton University Press, Princeton, New Jersey.Google Scholar
  3. Barton, N.H., 1979. Gene flow past a cline. Heredity 43: 333–339.Google Scholar
  4. Beaman, M., 1994. Palearctic Birds: a Checklist of the Birds of Europe, North Africa and Asia North of the Foothills of the Himalayas. Harrier Publications, Stonyhurst, England.Google Scholar
  5. Blair, W.F., 1950. Ecological factors in speciation of Peromyscus. Evolution 4: 253–275.Google Scholar
  6. Blakers, M., S.J.J.F. Davies & P.N. Reilly, 1984. The Atlas of Australian Birds. Melbourne University Press, Melbourne.Google Scholar
  7. Bock, W.J., 1959. The status of the Semipalmated Plover. Auk 76: 98–100.Google Scholar
  8. Bonhomme, F., R. Anand, D. Darviche, W. Din & P. Bousot, 1994. The House Mouse as a ring species?, pp. 13–23 in Genetics in Wild Mice: Its Application to Biomedical Research, edited by K. Moriwaki, T. Shiroishi & H. Yonekawa. Japan Scientific Societies Press, Tokyo.Google Scholar
  9. Brain, P., 1989. Genetic races in a ring species, Acacia karroo. SAfr. Tydskr. Wet. 85: 181–185.Google Scholar
  10. Brown, C.W., 1974. Hybridization Among the Subspecies of the Plethodontid Salamander Ensatina eschscholtzii. University of California Press, Berkeley.Google Scholar
  11. Brown, F.M. & B. Heineman, 1972. Jamaica and its Butterflies. E.W. Classey Ltd., London.Google Scholar
  12. Burger, J. & M. Gochfeld, 1996. Family Laridae (gulls), pp. 572–623 in Handbook of the Birds of the World, Vol. 3, Hoatzin to Auks, edited by J. del Hoyo, A. Elliott & J. Sargatal. Lynx Edicions, Barcelona.Google Scholar
  13. Cain, A.J., 1954. Animal Species and their Evolution. Hutchinson House, London.Google Scholar
  14. Cain, A.J., 1955. A revision of Trichoglossus haematodus and of the Australian platycercine parrots. Ibis 97: 432–479.Google Scholar
  15. Caire, W. & E.G. Zimmerman, 1975. Chromosomal and morphological variation and circular overlap in the deer mouse, Peromyscus maniculatus, in Texas and Oklahoma. Syst. Zool. 24: 89–95.Google Scholar
  16. Catchpole, C.K. & P.J.B. Slater, 1995. Bird Song: Biological Themes and Variations. Cambridge University Press, Cambridge.Google Scholar
  17. Collar, N.J., 1997. Family Psittacidae (parrots), pp. p280–479 in Handbook of the Birds of the World, Vol. 4, Sandgrouse to Cuckoos, edited by J. del Hoyo, A. Elliott & J. Sargatal. Lynx Edicions, Barcelona.Google Scholar
  18. Coyne, J. & T. Price, 2000. Little evidence for sympatric speciation in island birds. Evolution 54: 2166–2171.Google Scholar
  19. Cramp, S. (ed.), 1992. Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic. Oxford University Press, Oxford.Google Scholar
  20. Danley, P.D., J.A. Markert, M.E. Arnegard & T.D. Kocher, 2000. Divergence with gene flow in the rock-dwelling cichlids of Lake Malawi. Evolution 54: 1725–1737.Google Scholar
  21. Darwin, C., 1859. The Origin of Species by Means of Natural Selection. John Murray, London.Google Scholar
  22. Dementev, G.P. & N.A. Gladkov (eds), 1968. Birds of the Soviet Union, Vol. 6, Israel Program for Scientific Translations, Jerusalem.Google Scholar
  23. Dice, L.R., 1940. The relation of genetics to geographical distribution and speciation; speciation. II. speciation in Peromyscus. Am. Nat. 74: 289–298.Google Scholar
  24. Dieckmann, U. & M. Doebeli, 1999. On the origin of species by sympatric speciation. Nature 400: 354–357.Google Scholar
  25. Dobzhansky, T., 1958. Species after Darwin, pp. 19–55 in A Century of Darwin, edited by S.A. Barnett. Heinemann, London.Google Scholar
  26. Dobzhansky, T. & O. Pavlovsky, 1967. Experiments on the incipient species of the Drosophila paulistorum complex. Genetics 55: 141–156.Google Scholar
  27. Dobzhansky, T. & B. Spassky, 1959. Drosophila paulistorum, a cluster of species in statu nascendi. Proc. Natl. Acad. Sci. USA 45: 419–428.Google Scholar
  28. Dobzhansky, T., L. Ehrman, O. Pavlovsky & B. Spassky, 1964. The superspecies Drosophila paulistorum. Proc. Natl. Acad. Sci. USA 51: 3–9.Google Scholar
  29. Ehrlich, P.R. & P.H. Raven, 1969. Differentiation of populations. Science 165: 1228–1232.Google Scholar
  30. Endler, J.A., 1977. Geographic Variation, Speciation, and Clines. Princeton University Press, Princeton, New Jersey.Google Scholar
  31. Endler, J.A., 1992. Signals, signal conditions, and the direction of evolution. Am. Nat. 139: s125–s153.Google Scholar
  32. Fear, K. & T. Price, 1998. The adaptive surface in ecology. Oikos 82: 440–448.Google Scholar
  33. Filchak, K.E., J.B. Roethele & J.L. Feder, 2000. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407: 739–742.Google Scholar
  34. Fry, C.H. & K. Fry, 1992. Kingfishers, Bee-Eaters and Rollers. Princeton University Press, Princeton, New Jersey.Google Scholar
  35. Futuyma, D.J. & G. Mayer, 1980. Non-allopatric speciation in animals. Syst. Zool. 29: 254–271.Google Scholar
  36. Gavrilets, S., 2000. Waiting time to parapatric speciation. Proc. R. Soc. Lond. B 267: 2483–2492.Google Scholar
  37. Gavrilets, S., H. Li & M.D. Vose, 1998. Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. Lond. B 265: 1483–1489.Google Scholar
  38. Grant, P.R., 1968. Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Syst. Zool. 17: 319–333.Google Scholar
  39. Grant, P.R., 1986. Ecology and Evolution of Darwin' Finches. Princeton University Press, Princeton, New Jersey.Google Scholar
  40. Gulick, J.T.,1890a. Indiscriminate separation under the same environment, a cause of divergence. Nature 42: 369–370.Google Scholar
  41. Gulick, J.T.,1890b. Unstable adjustments as affected by isolation. Nature 42: 28–29.Google Scholar
  42. Gulick, J.T., 1905. Evolution, Racial and Habitudinal. Carnegie Institution of Washington, Washington, D.C.Google Scholar
  43. Harrap, S. & D. Quinn, 1995. Chickadees, Tits, Nuthatches & Treecreepers. Princeton University Press, Princeton, New Jersey.Google Scholar
  44. Harrison, P., 1985. Seabirds: An Identification Guide. Houghton Mifflin, Boston, revised edn.Google Scholar
  45. Hayman, P., J. Marchant & T. Prater, 1986. Shorebirds: An Identification Guide to the Waders of the World. Houghton Mifflin, Boston.Google Scholar
  46. Helbig, A.J., 1991. Inheritance of migratory direction in a bird species: a cross-breeding experiment with southeast-migrating and southwest-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28(1): 9–12.Google Scholar
  47. Helbig, A.J., J. Martens, I. Seibold, F. Henning, B. Schottler & M. Wink, 1996. Phylogeny and species limits in the Palearctic chiffchaff Phylloscopus collybita complex: mitochondrial genetic differentiation and bioacoustic evidence. Ibis 138: 650–666.Google Scholar
  48. Highton, R., 1998. Is Ensatina eschscholtzii a ring-species? Herpetologica 54: 254–278.Google Scholar
  49. Hoffmeister, D.F., 1986. Mammals of Arizona. University of Arizona Press and Arizona Game and Fish Department, Tuscon.Google Scholar
  50. Holmes, D. & K. Phillipps, 1996. The Birds of Sulawesi. Oxford University Press, Oxford.Google Scholar
  51. Irwin, D.E., 2000. Song variation in an avian ring species. Evolution 54: 998–1010.Google Scholar
  52. Irwin, D.E., S. Bensch & T.D. Price, 2001. Speciation in a ring. Nature 409: 333–337.Google Scholar
  53. Jackman, T.R. & D.B. Wake, 1994. Evolutionary and historical analysis of protein variation in the blotched forms of salamanders of the Ensatina complex (Amphibia: Plethodontidae). Evolution 48: 876–897.Google Scholar
  54. Johannesson, K., 2001. Parallel speciation: a key to sympatric divergence. Trends Ecol. Evol. 16: 148–153.Google Scholar
  55. Johnson, C., 1985. Biochemical genetic variation in populations of Larus argentatus and Larus fuscus in northwestern Europe. Biol. J. Linn. Soc. 24: 349–363.Google Scholar
  56. Jordan, D.S., 1905. The origin of species through isolation. Science 22: 545–562.Google Scholar
  57. Klicka, J. & R.M. Zink, 1997. The importance of recent ice ages in speciation: a failed paradigm. Science 277: 1666–1669.Google Scholar
  58. de Knijff, P., F. Denkers, N.D. van Swelm & M. Kuiper, 2001. Genetic affinities within the Herring Gull Larus argentatus assemblage revealed by AFLP genotyping. J. Mol. Evol. 52: 85–93.Google Scholar
  59. Kondrashov, A., L. Yampolsky & S. Shabalina, 1998. On the sympatric origin of species by means of natural selection, pp. 90–98 in Endless Forms: Species and Speciation edited by D.J. Howard and S.H. Berlocher. Oxford University Press, Oxford.Google Scholar
  60. Kondrashov, A.S. & F.A. Kondrashov, 1999. Interactions among quantitative traits in the course of sympatric speciation. Nature 400: 351–354.Google Scholar
  61. Lack, D., 1947. Darwin' Finches. Cambridge University Press, Cambridge.Google Scholar
  62. Lande, R., 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78: 3721–3725.Google Scholar
  63. MacKinnon, J. & K. Phillips, 2000. A Field Guide to the Birds of China. Oxford University Press, Oxford.Google Scholar
  64. Martens, J., 1980. Lautäußerungen, verwandtschaftliche Beziehungen und Verbreitungsgeschichte asiatischer Laubsänger (Phylloscopus). Advances in Ethology. No. 22. Verlag Paul Parey, Berlin.Google Scholar
  65. Martens, J., 1982. Ringförmige Arealüberschneidung und Artbilding beim Zilpzalp, Phylloscopus collybita: Das lorenzii-Problem. Z. zool. Syst. Evolutionsforsch. 20: 82–100.Google Scholar
  66. Martens, J., 1996. Vocalizations and speciation of Palearctic birds, pp. 221–240 in Ecology and Evolution of Acoustic Communication in Birds, edited by D.E. Kroodsma & E.H. Miller. Cornell University Press, Ithaca, New York.Google Scholar
  67. Mayr, E., 1942. Systematics and the Origin of Species. Dover Publications, New York.Google Scholar
  68. Mayr, E., 1963. Animal Species and Evolution. Belknap Press of Harvard University Press, Cambridge, Massachusetts.Google Scholar
  69. Mayr, E., 1970. Populations, Species and Evolution: An Abridgment of Animal Species and Evolution. Belknap Press of Harvard University Press, Cambridge, Massachusetts.Google Scholar
  70. McKnight, M.L., 1995. Mitochondrial DNA phylogeography of Perognathus amplus and Perognathus longimembris (Rodentia: Heteromydae): a possible mammalian ring species. Evolution 49: 816–826.Google Scholar
  71. Michener, C.D., 1947. A revision of the American species of Hoplitis (Hymenoptera, Megachilidae). Bull. Am. Mus. Nat. Hist. 89: 257–318.Google Scholar
  72. Monroe, B.L., Jr. & C.G. Sibley, 1993. A World Checklist of Birds. Yale University Press, New Haven, Connecticut.Google Scholar
  73. Moritz, C., C.J. Schneider & D.B. Wake, 1992. Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst. Biol. 41: 273–291.Google Scholar
  74. Moriya, K., 1960. Studies on the five races of the Japanese pond frog, Rana nigromaculata Hallowell. III. sterility in interracial hybrids. J. Sci. Hiroshima University (B) 18: 125–156.Google Scholar
  75. Muller, H., 1942. Isolating mechanisms, evolution and temperature. Biol. Symp. 6: 71–125.Google Scholar
  76. Orr, H.A., 1995. The population genetics of speciation: the evolution of hybrid incompatiblilities. Genetics 139(4): 1805–1813.Google Scholar
  77. Parsons, T.J., S.L. Olson & M.J. Braun, 1993. Unidirectional spread of secondary sexual plumage traits across an avian hybrid zone. Science 260: 1643–1646.Google Scholar
  78. Pratt, H.D., P.L. Bruner & D.G. Berrett, 1987. A Field Guide to the Birds of Hawaii and the Tropical Pacific. Princeton University Press, Princeton, New Jersey.Google Scholar
  79. Price, T., A. Helbig & A. Richman, 1997. Evolution of breeding distributions in the Old World Leaf Warblers (genus Phylloscopus). Evolution 51: 552–561.Google Scholar
  80. Rice, W.R. & E.E. Hostert, 1993. Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47: 1637–1653.Google Scholar
  81. Rice, W.R., 1998. Intergenomic conflict, interlocus anatagonistic coevolution, and the evolution of reproductive isolation, pp. 261–270 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, Oxford.Google Scholar
  82. Rice, W.R., 2000. Dangerous liaisons. Proc. Natl. Acad. Sci. USA 97: 12953–12955.Google Scholar
  83. Ryttman, H., H. Tegelström & H. Jansson, 1980. Isozyme differences in three related Larus species (Aves). Hereditas 92: 117–122.Google Scholar
  84. Salomon, M., 1989. Song as a possible reproductive isolating mechanism between two parapatric forms. The case of the Chiffchaffs Phylloscopus c. collybita and P. c. brehmii in the Western Pyrenees. Behaviour 111: 270–290.Google Scholar
  85. Schliewen, U.K., D. Tautz & S. Pääbo, 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368: 629–632.Google Scholar
  86. Schluter, D. & T. Price, 1993. Honesty, perception and population divergence in sexually selected traits. Proc. R. Soc. Lond. B 253: 117–122.Google Scholar
  87. Scholl, A. & A. Pedroli-Christen, 1996. The taxa of Rhymogona (Diplopoda: Craspedosomatidae): a ring species. Part one: genetic analysis of population structure, in Acta Myriapodologica, edited by J.-J. Geoffroy, J.-P. Mauriès & M. Nguyen Duy-Jacquemin. Mém. Mus. natn. Hist. nat. 169: 45–51.Google Scholar
  88. Schneider, C.J., T.B. Smith, B. Larison & C. Moritz, 1999. A test of alternative models of diversification in tropical rainforests: Ecological gradients versus rainforest refugia. Proc. Natl. Acad. Sci. USA 96: 13869–13873.Google Scholar
  89. Schwartz, A., 1989. The Butterflies of Hispaniola. University of Florida Press, Gainesville, Florida.Google Scholar
  90. Searcy, W.A. & E.A. Brenowitz, 1988. Sexual differences in species recognition of avian song. Nature 332: 152–154.Google Scholar
  91. Sibley, C.G. & B.L. Monroe, Jr., 1990. Distribution and Taxonomy of Birds of theWorld. Yale University Press, New Haven, Connecticut.Google Scholar
  92. Simpson, K., N. Day & P. Trusler, 1999. Birds of Australia. Sixth edition. Princeton University Press, Princeton, New Jersey.Google Scholar
  93. Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.Google Scholar
  94. Smith, H.G., 1969. Polymorphism in Ringed Plovers. Ibis 111: 177–188.Google Scholar
  95. Smith, T.B., C.J. Schneider & K. Holder, 2001. Refugial isolation versus divergent selection: testing alternative mechanisms of evolutionary divergence in four rainforest vertebrates. Genetica 112-113: 383–398.Google Scholar
  96. Smith, T.B., R.K. Wayne, D. Girman & M. Bruford, 1997. A role for ecotones in generating rainforest biodiversity. Science 276: 1855–1857.Google Scholar
  97. Snell, R.R., 1991. Interspecific allozyme differentiation among North Atlantic white-headed Larid gulls. Auk 108: 319–328.Google Scholar
  98. Stebbins, R.C., 1949. Speciation in salamanders of the Plethodontid genus Ensatina. Univ. Calif. Publ. Zool. 48: 377–526.Google Scholar
  99. Stebbins, R.C., 1957. Intraspecific sympatry in the lungless salamander Ensatina eschscholtzii. Evolution 11: 265–270.Google Scholar
  100. Thiollay, J.M., 1994. Family Accipitridae (hawks and eagles), pp. 52–205 in Handbook of the Birds of the World, Vol. 2, New World Vultures to Guineafowl, edited by J. del Hoyo, A. Elliott & J. Sargatal. Lynx Edicions, Barcelona.Google Scholar
  101. Ticehurst, C.B., 1938. A Systematic Review of the Genus Phylloscopus. Trustees of the British Museum, London.Google Scholar
  102. Vanderplanck, F.L., 1948. Experiments in cross-breeding tsetse-flies (Glossina species). Ann. Trop. Med. Parasit., Liverpool 42: 131–152.Google Scholar
  103. Vaurie, C., 1951. A study of Asiatic larks. Bull. Am.Mus. Nat. Hist. 97: 431–526.Google Scholar
  104. Vaurie, C. 1959. The Birds of the Palearctic Fauna: A Systematic Reference, Order Passeriformes. H.F. & G. Witherby, London.Google Scholar
  105. Wake, D.B. & C.J. Schneider, 1998. Taxonomy of the plethodontid salamander genus Ensatina. Herpetologica 54: 279–298.Google Scholar
  106. Wake, D.B. & K.P. Yanev, 1986. Geographic variation in allozymes in a ‘ring species’, the plethodontid salamander Ensatina eschscholtzii of western North America. Evolution 40: 702–715.Google Scholar
  107. Wake, D.B., K.P. Yanev & C.W. Brown, 1986. Intraspecific sympatry in a ‘ring species’, the plethodontid salamander Ensatina eschscholtzii, in southern California. Evolution 40: 866–868.Google Scholar
  108. Wiersma, P., 1996. Family Charadriidae (plovers): species accounts, pp. 410–442 in Handbook of the Birds of the World, Vol. 3, Hoatzin to Auks, edited by J. del Hoyo, A. Elliott & J. Sargatal. Lynx Edicions, Barcelona.Google Scholar
  109. Williamson, K., 1962. Identification for Ringers. 2. The Genus Phylloscopus. British Trust of Ornithology, London.Google Scholar
  110. Wilson, A.B, K. Noack-Kunnmann & A. Meyer, 2000. Incipient speciation in sympatric Nicaraguan crater lake cichlid fishes: sexual selection versus ecological diversification. Proc. R. Soc. Lond. B 267: 2133–2141.Google Scholar
  111. Woodall, P.F., 2001. Family Alcedinidae (kingfishers), pp. 130–249 in Handbook of the Birds of the World, Vol. 6, Mousebirds to Hornbills, edited by J. del Hoyo, A. Elliott & J. Sargatal. Lynx Edicions, Barcelona.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Darren E. Irwin
    • 1
  • Jessica H. Irwin
    • 2
  • Trevor D. Price
    • 3
  1. 1.Department of Ecology, Section of Animal EcologyLund UniversityLundSweden
  2. 2.Department of Ecology, Section of Animal EcologyLund UniversityLundSweden
  3. 3.Department of Biology 0116University of California, San DiegoLa JollaUSA

Personalised recommendations