Advertisement

Letters in Mathematical Physics

, Volume 58, Issue 2, pp 167–180 | Cite as

Euler–Poincaré Reduction on Principal Bundles

  • M. Castrillón López
  • P. L. García Pérez
  • T. S. Ratiu
Article

Abstract

Let π: PM be an arbitrary principal G-bundle. We give a full proof of the Euler–Poincaré reduction for a G-invariant Lagrangian L: J1P → R as well as the study of the second variation formula, the conservations laws, and study some of their properties.

calculus of variations Euler–Poincaré equations reconstruction reduction symmetries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V. I.: Dynamical Systems III, Encyclop. Math. 3, Springer, New York.Google Scholar
  2. 2.
    Castrillón López, M. and Muñoz Masqué, J.: The geometry of the bundle of connections, Math. Z. 236(9) (2001), 797–811.Google Scholar
  3. 3.
    Castrillón López, M., Ratiu, T. S. and Shkoller, S.: Reduction in principal fiber bundles: covariant Euler–Poincaré equations, Proc. Amer. Math. Soc. 128(7), (2000), 2155–2164.Google Scholar
  4. 4.
    Eck, D. J.: Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc. 247 (1981).Google Scholar
  5. 5.
    García, P. L.: Gauge algebras, curvature and symplectic structure, J. Differential Geom. 12 (1977), 209–227.Google Scholar
  6. 6.
    García, P. L.: The Poincaré–Cartan invariant in the calculus of variations, Symposia Math. 14 (1974), 219–246.Google Scholar
  7. 7.
    Giachetta, G., Mangiarotti, L. and Sarnanashvily, G.: New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997.Google Scholar
  8. 8.
    Goldschmidt, H. and Sternberg, S.: The Hamiltonian-Cartan formalism in the calculus of variations, Ann. Inst. Fourier Grenoble 23(1), (1973), 203–267.Google Scholar
  9. 9.
    Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Wiley, New York, Volume I, 1963; Volume II, 1969.Google Scholar
  10. 10.
    Marsden, J. E. and Ratiu, T. S.: Introduction to Mechanics and Symmetry, Text Appl. Math. 17, Springer, New York, 1999.Google Scholar
  11. 11.
    Pluzhnikov, A. I.: Some properties of harmonic mappings in the case of spheres and Lie groups, Soviet Math. Dokl. 27 (1983) 246–248.Google Scholar
  12. 12.
    Urakawa, H.: Calculus of Variations and Harmonic Maps, Transl. Amer. Math. Soc., Providence, 1993.Google Scholar
  13. 13.
    Varadarajan, V. S. Lie Groups, Lie Algebras, and their Representations, Springer, New York, 1984.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M. Castrillón López
    • 1
  • P. L. García Pérez
    • 2
  • T. S. Ratiu
    • 3
  1. 1.Departamento de Geometría y TopologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de MatemáticasUniversidad de SalamancaSalamancaSpain
  3. 3.Département de MathématiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations