Journal of Autism and Developmental Disorders

, Volume 31, Issue 6, pp 561–568 | Cite as

Magnetic Resonance Imaging of the Post-Mortem Autistic Brain

  • Cynthia Mills Schumann
  • Michael H. Buonocore
  • David G. Amaral


Magnetic resonance imaging (MRI) is a valuable, noninvasive tool for understanding structural abnormalities in the brain. The M.I.N.D. Institute at UC Davis has developed a protocol utilizing MRI to investigate anatomical differences in the post-mortem brain by applying a proton density weighted imaging sequence for optimal differences in image intensity (contrast) between gray and white matter. Images of the brain obtained prior to distribution of tissue and further neuropathological examination provide a record of how the brain appeared prior to tissue processing. The virtual representation of the whole brain can also be subjected to additional analyses, such as measuring the volume of brain regions or area of the cortical surface. We describe our procedures for carrying out post-mortem MRI of the human brain.

Autism MRI neuroimaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., Rutter, M., & Lantos, P. (1998). A clinicopathological study of autism. Brain, 121(Pt 5), 889–905.PubMedGoogle Scholar
  2. Blamire, A. M., Rowe, J. G., Styles, P., & McDonald, B. (1999). Optimising imaging parameters for post-mortem MR imaging of the human brain. Acta Radiology, 40(6), 593–597.Google Scholar
  3. Bobinski, M., de Leon, M. J., Wegiel, J., Desanti, S., Convit, A., Saint Louis, L. A., Rusinek, H., & Wisniewski, H. M. (2000). The histological validation of post-mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience, 95(3), 721–725.PubMedGoogle Scholar
  4. Jack, C. R., Jr., Petersen, R. C., O'Brien, P. C., & Tangalos, E. G. (1992). MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease. Neurology, 42(1), 183–188.PubMedGoogle Scholar
  5. Nagara, H., Inoue, T., Koga, T., Kitaguchi, T., Tateishi, J., & Goto, I. (1987). Formalin fixed brains are useful for magnetic resonance imaging (MRI) study. Journal of Neurological Science, 81(1), 67–77.Google Scholar
  6. Nixon, J. R., Miller, G. M., Okazaki, H., & Gomez, M. R. (1989). Cerebral tuberous sclerosis: Postmortem magnetic resonance imaging and pathologic anatomy. Mayo Clinical Proceedings, 64(3), 305–311.Google Scholar
  7. Piven, J., Arndt, S., Bailey, J., & Andreasen, N. (1996). Regional brain enlargement in autism: A magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 35(4), 530–536.PubMedGoogle Scholar
  8. Saitoh, O., & Courchesne, E. (1998). Magnetic resonance imaging study of the brain in autism. Psychiatry and Clinical Neuroscience, 52(Suppl), S219–222.PubMedGoogle Scholar
  9. Scarpelli, M., Salvolini, U., Diamanti, L., Montironi, R., Chiaromoni, L., & Maricotti, M. (1994). MRI and pathological examination of post-mortem brains: The problem of white matter high signal areas. Neuroradiology, 36(5), 393–398.PubMedGoogle Scholar
  10. Seab, J. P., Jagust, W. J., Wong, S. T., Roos, M. S., Reed, B. R., & Budinger, T. F. (1988). Quantitative NMR measurements of hippocampal atrophy in Alzheimer's disease. Magnetic Resonance Medicine, 8(2), 200–208.Google Scholar
  11. Tovi, M., & Ericsson, A. (1992). Measurements of T1 and T2 over time in formalin-fixed human whole-brain specimens. Acta Radiology, 33(5), 400–404.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Cynthia Mills Schumann
    • 1
  • Michael H. Buonocore
    • 2
  • David G. Amaral
    • 1
  1. 1.The M.I.N.D. Institute, Department of Psychiatry, and Center for NeuroscienceUniversity of CaliforniaDavis
  2. 2.Department of RadiologyUniversity of California, Davis, School of MedicineUSA

Personalised recommendations