Journal of Autism and Developmental Disorders

, Volume 31, Issue 6, pp 521–527

Current Investigations in Autism Brain Tissue Research

  • Jane Pickett
Introduction

Abstract

Brain tissue research has developed into a high-tech, multifaceted approach to understanding neurological disorders. Directed toward autism spectrum disorders, this investigative approach combines with other disciplines, such as imaging and genetics, to help explain the range and intensity of behaviors that characterize these disorders. This report is intended as an update on current autism brain research efforts and has a dual purpose: first, to disseminate information to the scientific community in the hope of stimulating more thinking about autism research and future collaborations; and second, to let the autism community know what is happening with this precious resource that was donated in the hope of determining the cause of autism and finding effective treatments.

Autism brain research brain tissue neuropathology neurohistology magnetic resonance imaging (MRI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Allen, C., Zoghbi, H. Y., Moseley, A. B., Rosenblatt, H. M., & Belmont, J. W. (1992). Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Journal of Human Genetics, 51, 1229–1239.Google Scholar
  2. Anderson, G. M., Horne, W. C., Chaterjee, D., & Cohen, D. J. (1990). The hyperserotonemia of autism. Annals of the New York Academy of Science, 600, 331–340.Google Scholar
  3. Barton, M., & Volkmar, F. (1998). How commonly are known medical conditions associated with autism? Journal of Autism and Developmental Disorders, 28(4), 273–279.PubMedGoogle Scholar
  4. Bauman, M. L., & Kemper, T. L. (1994). Neuro-anatomic observations of the brain in autism. In M. L. Bauman & T. L. Kemper (Eds.), The Neurobiology of autism, (pp. 119–145). Baltimore: Johns Hopkins University Press.Google Scholar
  5. Cook, E. H. (1990). Autism: Review of neurochemical investigation. Synapse, 6(3), 292–308.PubMedGoogle Scholar
  6. Graf, W. D., Marin-Garcia, J., Gao, H. G., Pizzo, S., Naviaux, R. K., Markusic D., Barshop, B. A., Courchesne, E., & Haas, R. H. (2000). Autism associated with the mitochondrial DNA G8363A transfer RNA(Lys) mutation. Journal of Child Neurology, 15(6), 357–361.PubMedGoogle Scholar
  7. Hellings, J. A. (2000). Treatment of comorbid disorders in autism: Which regimens are effective and for whom? Medscape Mental Health, 5(1); http://www.medscape.com.Google Scholar
  8. Lipani, J. D., Bhattacharjee, M. B., Corey, D. M., & Lee, D. A. (2000). Reduced nerve growth factor (NGF) in Rett syndrome (RS) post-mortem brain tissue. Journal of Neuropathology and Experimental Neurology, 59, 889–895.PubMedGoogle Scholar
  9. Lord, C., Pickles, A., McLennan, J., Rutter, M., Bregman, J., Folstein, S., Fombonne, E., Leboyer, M., & Minshew, N. J. (2000). Diagnosing autism: Analyses of data from the Autism Diagnostic Interview. Child Neurology, 15(6), 357–361.PubMedGoogle Scholar
  10. Mai, J. K., Assheuer, J., & Paxinos, G. (1997). Altas of the Human Brain. San Diego: Academic Press, Harcourt Brace and Company.Google Scholar
  11. Miles, J., & Hillman, R. E. (2000). Value of a clinical morphology examination in autism. American Journal of Medical Genetics, 10, 245–253.Google Scholar
  12. Nelson, K. B., Grether, J. K., Croen, L. A., Dambrosia, J. M., Dickens, B. F., Jelliffe, L. L., Hansen, R. L., & Phillips, T. M. (2001). Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Annals of Neurology, 49(5), 597–606.PubMedGoogle Scholar
  13. Nylander, L., & Gillberg, C. (2001). Screening for autism spectrum disorders in adult psychiatric outpatients: A preliminary report. Acta Psychiatria Scandinavica, 103(6), 428–434.Google Scholar
  14. Page, T., & Coleman, M. (2000). Purine metabolism abnormalities in a hyperuricosuric subclass of autism. Biochemistry Biophysics Acta, 17;1500(3), 291–296.Google Scholar
  15. Perry, E. K., Lee, M. L., Martin-Ruiz, C. M., Court, J. A., Volsen, S. G., Merrit, J., Folly, E., Iversen, P. E., Bauman, M. L., Perry, R. H., & Wenk, G. L. (2001). Cholinergic activity in autism: Abnormalities in the cerebral cortex and basal forebrain. American Journal of Psychiatry, 158(7), 1058–1066.PubMedGoogle Scholar
  16. Persico, A. M., D'Agruma, L., Maiorano, N., Totaro, A., Militerni, R., Bravaccio, C., Wassink, T. H., Schneider, C., Melmed, R., Trillo, S., Montecchi, F., Palermo, M., Pascucci, T., Puglisi-Allegra, S., Reichelt, K. L., Conciatori, M., Marino, R., Quattrocchi, C. C., Baldi, A., Zelante, L., Gasparini, P., & Keller, F.: The Collaborative Linkage Study of Autism. (2001). Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Molecular Psychiatry, 6(2), 150–159.PubMedGoogle Scholar
  17. Raymond, G. V., Bauman, M. L., & Kemper, T. L. (1996). Hippocampus in autism: A Golgi analysis. Acta Neuropathologie (Berlin), 91(1), 117–119.Google Scholar
  18. Schain, R. J., & Freedman, D. X. (1961). Studies on 5-hydroxy-indolemetabolism in autistic and other mentally retarded children. Journal of Pediatrics, 58, 315–320.PubMedGoogle Scholar
  19. Schleicher, A., Amunts, K., Geyer, S., Lowalski, T., Schormann, T., Palomero-Gallagher, N., & Zilles, K. (2000). A stereological approach to human cortical architecture: Identification and delineation of cortical areas. Journal of Chemical Neuroanatomy, 20, 31–47.PubMedGoogle Scholar
  20. Schmitz, C., & Hof, P. R. (2000). Recommendations for straight-forward and rigorous methods of counting neurons based on computer estimation procedure. Journal of Chemical Neuroanatomy, 20, 93–114.PubMedGoogle Scholar
  21. Tierney, E., Nwokoro, N. A., & Kelley, R. I. (2000). Behavioral pohenotype of RSH/Smith-Lemli-Opitz syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 6(20), 131–134.PubMedGoogle Scholar
  22. West, M. J. (1993). New stereological methods for counting neurons. Neurobiology of Aging, 14, 275–285.PubMedGoogle Scholar
  23. Williams, R. W., & Rakic, P. (1988). Three-dimensional counting: An accurate and direct method to estimate numbers of cells in sectioned material. Journal of Comparative Neurology, 278, 344–352.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Jane Pickett
    • 1
  1. 1.Autism Tissue ProgramPrinceton

Personalised recommendations