Differential Effects of Atropine and Isoproterenol on Inducibility of Atrioventricular Nodal Reentrant Tachycardia

  • Christoph Stellbrink
  • Björn Diem
  • Patrick Schauerte
  • Kathrin Brehmer
  • Henry Schuett
  • Peter Hanrath


Background: Radiofrequency ablation of the “slow pathway” in atrioventricular nodal reentrant tachycardia (AVNRT) relies on tachycardia non-inducibility after ablation as success criterion. However, AVNRT is frequently non-inducible at baseline. Thus, autonomic enhancement using either atropine or isoproterenol is frequently used for arrhythmia induction before ablation.

Methods: 80 patients (57 women, 23 men, age 50±14 years) undergoing slow pathway ablation for recurrent AVNRT were randomized to receive either 0.01mg/kg atropine or 0.5-1.0μg/kg/min isoproterenol before ablation after baseline assessment of AV conduction. The effects of either drug on ante- and retrograde conduction was assessed by measuring sinus cycle length, PR and AH interval, antegrade and retrograde Wenckebach cycle length (WBCL), antegrade effective refractory period (ERP) of slow and fast pathway and maximal stimulus-to-H interval during slow and fast pathway conduction.

Results: Inducibility of AVNRT at baseline was not different between patients randomized to atropine (73%) and isoproterenol (58%) but was reduced after atropine (45%) compared to isoproterenol (93%, P<0.001). Of the 28 patients non-inducible at baseline isoproterenol rendered AVNRT inducible in 21, atropine in 4 patients. Dual AV nodal pathway physiology was present in 88% before and 50% after atropine compared to 83% before and 73% after isoproterenol. Whereas both drugs exerted similar effects on ante- and retrograde fast pathway conduction maximal SH interval during slow pathway conduction was significantly shorter after isoproterenol (300±48ms vs. 374±113ms, P=0.012).

Conclusion: Isoproterenol yields higher AVNRT inducibility than atropine in patients non-inducible at baseline. This may be caused by a more pronounced effect on antegrade slow pathway conduction.

supraventricular tachycardia atropine isoproterenol atrioventricular node 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jackman WM, Beckman KJ, McClelland JH, et al. Treatment of supraventricular tachycardia due to atrioventricular nodal reentry by radiofrequency catheter ablation of slow-pathway conduction. N Engl J Med 1992;327:313-318.Google Scholar
  2. 2.
    Jazayeri MR, Hempe SL, Sra JS, et al. Selective transcatheter ablation of the fast and slow pathways using radiofrequency energy in patients with atrioventricular nodal reentrant tachycardia. Circulation 1992;85:1318-1328.Google Scholar
  3. 3.
    Kay GN, Epstein AE, Daley SM, Plumb VJ. Selective radiofrequency ablation of the slow pathway for the treatment of atrioventricular nodal reentrant tachycardia: evidence for involvement of perinodal myocardium within the reentrant circuit. Circulation 1992;85:1675-1688.Google Scholar
  4. 4.
    Haissaguerre M, Gaita F, Fischer B, et al. Elimination of atrioventricular nodal reentrant tachycardia using discrete slow potentials to guide application of radiofrequency energy. Circulation 1992;85:2162-2175.Google Scholar
  5. 5.
    Kalbfleisch SJ, Morady F. Catheter ablation of atrioventricular nodal reentrant tachycardia. In: Zipes DP, Jalife J, eds. Cardiac electrophysiology. From cell to bedside, 2nd ed. Philadelphia, USA: WB Saunders Company, 1477-1486.Google Scholar
  6. 6.
    Wu D, Denes P, Bauernfeind R, Dhingra RC, Wyndham C, Rosen KM. Effects of atropine on induction and maintenance of atrioventricular nodal reentrant tachycardia. Circulation 1979;59(4):779-788.Google Scholar
  7. 7.
    Neuss H, Schlepper M, Spies HF. Effects of heart rate and atropine on “dual AV conduction”. Br Heart J 1975;37:1216-1227.Google Scholar
  8. 8.
    Vargas G, Akhtar M, Damato AN. Electrophysiologic effects of isoproterenol on cardiac conduction system in man. Am Heart J 1975;90(1):25-34.Google Scholar
  9. 9.
    Brownstein SL, Hopson RC, Martins JB, Aschoff AM, Olshansky B, Constantin L, Kienzle MG. Usefulness of isoproterenol in facilitating atrioventricular nodal reentry tachycardia during electrophysiologic testing. Am J Cardiol 1988;61:1037-1041.Google Scholar
  10. 10.
    Huycke EC, Lai WT, Nguyen NX, Keung EC, Sung RJ. Role of intravenous isoproterenol in the electrophysiologic induction of atrioventricular node reentrant tachycardia in patients with dual atrioventricular node pathways. Am J Cardiol 1989;64:1131-1137.Google Scholar
  11. 11.
    Yu WC, Chen SA, Chiang CE, Tai CT, Lee SH, Chiou CW, Ueng KC, Wen ZC, Chen YJ, Huang JL, Chang MS. Effects of isoproterenol in facilitating induction of slow-fast atrioventricular nodal reentrant tachycardia. Am J Cardiol 1998;78(11):1299-1302.Google Scholar
  12. 12.
    Wu D, Denes P. Mechanisms of paroxysmal supraventricular tachycardia. Arch Intern Med 1975 Mar;135(3):437-442.Google Scholar
  13. 13.
    Josephson ME, Kastor JA. Supraventricular tachycardia: mechanisms and management. Ann Intern Med 1977 Sep;87(3):346-358.Google Scholar
  14. 14.
    Josephson ME. Electrophysiologic investigation: general concepts. In: Josephson ME, ed. Clinical Cardiac Electrophysiology. Techniques and Interpretations, 2nd ed. Malvern, PA, USA: Lea & Febiger, 1993:22-70.Google Scholar
  15. 15.
    Strickberger SA, Daoud EG, Niebauer MJ, Hasse C, Man KC, Morady F. The mechanisms responsible for lack of reproducible induction of atrioventricular nodal reentrant tachycardia. J Cardiovasc Electrophysiol 1996;7:494-502.Google Scholar
  16. 16.
    Hariman RJ, Pasquariello JL, Gomes JAC, Holtzman R, El-Sherif N. Autonomic dependence of ventriculoatrial conduction. Am J Cardiol 1985;56:285-291.Google Scholar
  17. 17.
    Hatzinikolaou H, Rodriguez LM, Smeets JLRM, Timmermanns C, Vrouchos G, Grecas G, Wellens HJJ. Isoprenaline and inducibility of atrioventricular nodal reentrant tachycardia. Heart 1998;79:165-168.Google Scholar
  18. 18.
    Wu D. A-V nodal reentry. Pacing Clin Electrophysiol 1983;6:1190-1200.Google Scholar
  19. 19.
    McGuire MA, Robotin M, Yip ASB, Bourke JP, Johnson DC, Dewsnap BJ, Grant P, Uther JB, Ross DL. Electrophysiologic and histologic effects of dissection of the connections between the atrium and posterior part of the atrioventricular node. J Am Coll Cardiol 1994;23:693-701.Google Scholar
  20. 20.
    Cossu SF, Rothman SA, Chmielewski IL, Hsia HH, Vogel RL, Niller JM, Buxton AE. The effects of isoproterenol on the cardiac conduction system: site-specific dose-dependence. J Cardiovasc Electrophysiol 1997;8:847-853.Google Scholar
  21. 21.
    Urthaler F, Neely BH, Hageman GR, et al. Differential sympathetic-parasympathetic interactions in sinus node and AV junction. Am J Physiol 1986; 250:H43.Google Scholar
  22. 22.
    Levy MN, Zieske H. Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 1969;27:465.Google Scholar
  23. 23.
    Lin LJ, Lin JL, Lai LP, Chen JH, Tseng YZ, Lien WP. Effects of pharmacological autonomic blockade on dual atrioventricular nodal pathways physiology in patients with slow-fast atrioventricular tachycardia. Pacing Clin Electrophysiol 1998;21:1375-1379.Google Scholar
  24. 24.
    Schauerte P, Scherlag BJ, Scherlag MA, Jackman WM, Lazzara R. Transvenous parasympathetic nerve stimulation in the inferior vena cava and atrioventricular conduction. J Cardiovasc Electrophysiol 2000;11:64-69.Google Scholar
  25. 25.
    Mazgalev T, Dreifus LS, Michelson EL. Effect of postganglionic vagal stimulation on the organization of atrioventricular nodal conduction in isolated rabbit heart tissue. Circulation 1986;4:869-880.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Christoph Stellbrink
    • 1
  • Björn Diem
    • 1
  • Patrick Schauerte
    • 1
  • Kathrin Brehmer
    • 1
  • Henry Schuett
    • 1
  • Peter Hanrath
    • 1
  1. 1.Department of Cardiology and Internal MedicineUniversity of TechnologyAachenGermany

Personalised recommendations